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SIMULATION OF THE STRUCTURAL DYNAMICS OF SPACECRAFT 

DURING LUNAR LANDING 

by 

John M. Bozajian 

Hughes Aircraf t  Company 

ABSTRACT 

Current methods of simulation u t i l i z e d  i n  development of  a landing system 

f o r  a lunar  soft-landing spacecraft  are presented. The technology is based on 

t h e  Surveyor, an unmanned, lunar  spacecraft  being developed by the  Hughes A i r -  

c r a f t  Company f o r  NASA under contract  t o  t h e  Jet Propulsion Laboratory. 

b r i e f  general  descr ipt ion of  Surveyor, i ts  mission and three-legged config- 

u ra t ion  are discussed. 

are described with respect  t o  both lunar surface and vehicle touchdown con- 

d i t i ons .  A landing dynamics computer program has been used t o  determine top- 

p l ing  s t a b i l i t y  and r e s u l t s  a r e  shown f o r  a range o f  lunar surface and space- 

craft  parameters. 

A .. 

The funct ional  requirements of the landing system 

Scaling parameters f o r  ea r th  gravi ty  t e s t i n g  are review 

........................................................... & 
The work described herein was performed under Jet  Propulsion Laboratory, 

Cal i fornia  I n s t i t u t e  of Technology contract  number 950056 under contract  number 
NAS7-100 sponsored by the  National Aeronautics and Space Administration and 
has r e su l t ed  from e f f o r t s  of many persons i n  t h e  Hughes Aircraf t  Company. 
The author wishes t o  acknowledge outstanding contributions of R. E. Dietr ick 
and R .  H .  Jones f o r  t h e  ana ly t i ca l  design of t h e  landing system and the  
associated landing dynamics analysis  and drop test  program; R. J. Sv i t z ,  
R. 3 .  Harter and W .  S.  Short f o r  t he  s t r u c t u r a l  s t a t i c  and dynamic analysis 
and t e s t  program; I. Baker and R.  E. Harvuot f o r  t h e  test f a c i l i t y  development 
and t e s t i n g ;  and P. E.  Rentz for instrumentation and data acquis i t ion systems. 
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Methods for  lunar grav i ty  t e s t i n g  a r e  discussed. 

simulation w a s  found t o  be appropriate for  Surveyor and t h e  drop t e s t  f a c i l i t y  

is  described in  d e t a i l .  Drop t e s t s  of a fu l l - sca le  dynamic model have shown 

favorable agreement with toppling s t a b i l i t y  computations. The s t r u c t u r a l  

dynamic response of t h e  spacecraft has developed from computer analysis  using 

normal modes from modal vibrat ion t e s t s .  Component and s t r u c t u r a l  responses 

from drop t e s t s  of a ful l -scale  s t r u c t u r a l  dynamic model have shown good agree- 

ment with t h e  t r a n s i e n t  modal analysis .  

A l i f t - f o r c e  method of gravi ty  

INTRODUCTION 

The purpose of t h i s  paper is  t h e  descr ipt ion of t h e  landing dynamics 

simulation program undertaken in  the  development of a lunar  soft-landing 

spacecraf t .  

system technology a r e  discussed based on t h e  Surveyor program. 

Analyt ical  and experimental methods employed in  lunar  landing 

Surveyor is an unmanned, lunar  soft-landing spacecraf t  being developed 

at Hughes Aircraf t  Company for t h e  NASA under contract  t o  t h e  J e t  Propulsion 

Laboratory. Under t h e  current plans,  seven Surveyors w i l l  be launched by 

Atlas/Centaur boosters .  

s ion  and measurements per t inent  t o  lunar  spacecraf t  development. Later 

vers ions w i l l  add experiments sampling the  lunar  surface and r e l a t e d  scien- 

t i f i c  measurements. 

The e a r l i e s t  Surveyors w l l l  emphasize lunar  t e l e v i -  

The Surveyor Spacecraft i s  shown i n  i t s  landed configuration i n  Figure 

1. The configuration is centered about the  three-legged, t r i a n g u l a r  planform. 

The bas ic  spacefrsme is a tubular  truss or 7075 aluminum. 

s o l i d  propel lant  main r e t r o  engine (separated before  landing)  i s  mounted 

up ins ide  t h e  spaceframe providing a compact design fo r  Centaur i n s t a l l a t i o n .  

The spher ica l ,  
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The main r e t r o  engine and t h e  l i q u i d  vernier  engine system comprise about t w o -  

t h i r d s  of t h e  2200 lbs .  gross weight and together  provide t h e  propulsive im- 

pulse t o  reduce Surveyor's r e l a t i v e  lunar  surface velocity t o  t h e  sof t - landing 

range. Telecommunications, power cont ro l ,  b a t t e r i e s ,  and other  e lec t ronic  

equipment requir ing continuous thermal control  a re  contained i n  t h e  major 

compartments shown i n  two of t h e  t h r e e  sec tors  of t h e  spacecraf t .  

sec tor  contains most of t h e  Surveyor mission payload. 

The t h i r d  

The landing system (Figure 1) i s  composed of t h r e e ,  foldable  landing 

gears and a crushable aluminum honeyccrmb block mounted near t h e  pivot point  

of each gear. 

s t r u c t u r a l  l e g  and aluminum honeycomb footpad. 

s c a l e  of Surveyor, t h e  one foot  diameter footpad centers are on a 12'8" 

c i r c l e .  The shock absorbers provide o r i f i c e  (ve loc i ty  squared) damping 

varying with compression s t r o k e ,  separately control led extension ( o r  rebound) 

damping and l i q u i d  spr ing act ion.  

gear is one foot  p a r a l l e l  t o  the  longi tudinal  ( r o l l )  axis of t h e  Spacecraff. 

Each landing gear consis ts  of a hydraulic shock absorber, 

To es tab l i sh  t h e  s ize  and 

The nominal maximum stroke of a landing 

The Reference contains a de ta i led  report  of the  ana ly t ica l  design pro- 

cedures f o r  t h e  landing system, t h e  rigid-body touchdown dynamics computer 

program and t h e  drop tests conducted p r i o r  t o  January 1963. 

summarizes t h e  e a r l i e r  work and presents r e s u l t s  of addi t ional  drop t e s t s  

and some accomplishments t o  da te  i n  t h e  s t r u c t u r a l  dynamic phases o f  t h e  

program. 

This paper 

LANDING SYSTEM REQUIREMENTS 

The vents during t h e  lunar  approach o r  terminal  descent phase of t h e  

Surveyor mission es tab l i sh  t h e  spacecraf t  landing or touchdown conditions. 
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A t y p i c a l  surveyor descent t r a j ec to ry  i s  shown in  Figure 2. 

gins with ign i t i on  of  t he  main r e t r o  at  52 miles where spacecraf t  r e l a t i v e  

ve loc i ty  i s  8600 fps .  

minimize possible  luna r  dust ra is ing and contamination. The r e su l t an t  

v e r t i c a l  landing ve loc i ty  i s  about 12+3 fps accounting f o r  various dispersions 

The spacecraft  touchdown requirements and a lunar surface model (pro- 

The descent be- 

The vernier engine phase ends i n  cutoff at 13 f t .  t o  

vided by JPL/NASA) together  comprise t h e  lunar  landing conditions summarized 

i n  Figure 3. The presence of an e f f ec t ive  surface slope is a harard t o  space- 

c r a f t  landing causing high pitching accelerat ions due t o  mult iple  l eg  contact 

and by creat ing conditions conducive t o  overturning or  "toppling" i n s t a b i l i t y  

during landing. Surveyor has been designed t o  accommodate slopes of 1 5  degrees 

and protuberances of t h e  order of 10 cm. Required surface hardness range of 

50 t o  25,000 p s i  confines all the k i n e t i c  energy absorption t o  t h e  spacecraft  

or  t o  s l i d i n g  f r i c t i o n .  

pads i s  less than 50 ps i . )  

s o f t  surface with an i n e l a s t i c  bearing s t rength gradient of 10 p s i  per foot 

depth. 

(The unit crushing s t rength of t h e  blocks and foot- 

Sone p n e t r a t i o n  ( 7-8 inches) occurs i n  t h e  

Spacecraft  conditions at  touchdown lead t o  v e r t i c a l  and l a t e r a l  ve loc i t i e s  

less than  1 5  fps (3a)  and 5 f p s ,  respect ively,  with respect t o  expected f l i g h t  

control  design. The s t r u c t u r a l  design, however, has been t h a t  appropriate 

t o  landings up t o  20 f p s  v e r t i c a l  and 7 fps ,  l a t e r a l  veloci ty .  For t h e  20 

fps case,  t h e  dynamic load factors on most components are less than 25 ea r th  

g. 

Two terminal lunar surface pictures  from Ranger V I 1  are shown i n  Figure 

4. Careful analysis of t hese  and other  Ranger p i c tu re s  i s  being performed by 

others  and w i l l  be in t e rp re t ed  fo r  Surveyor by t h e  J e t  Propulsion Laboratory. 

It i s  promising, however, t h a t  the average s lope appears small, l a rge  boulders 

~~ ~~ 
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o r  protuberances ( >  2 feet)  do not appear i n  high density and c r a t e r  depth 

appears t o  reduce with diameter. 

LANDING DYNAMICS ANALYSIS 

The primary t o o l  f o r  Surveyor landing system development has been an IBM 

7094 d i g i t a l  computer program f o r  t he  two-dimensional motions of a r i g i d  space- 

c r a f t  with fo rces  applied by t h r e e  landing gears and three crushable blocks. 

The model f o r  t h e  computer and some of t h e  parameters are shown i n  Figure 5. 

Some t y p i c a l  quan t i t i e s  f o r  Surveyor a re  A cg = 18 inches, I 

I p  

absorber o r i f i c e  damping ( t o  alleviate loads)  and l i qu id  spr ing force with 

s t roke ,  s t a t i c  and k i n e t i c  f r i c t i o n  on blocks and footpads and va r i a t ion  i n  

crushable block force with angle of  block load. The extension o r  rebound 

damping coe f f i c i en t  is constant and is  se l ec t ed  such t h a t  t h e  spacecraf t  is 

c r i t i c a l l y  damped (no rebound) during a 20 f p s  normal impact on a f lat  surface.  

Other parameters are t h e  hydraulic preload i n  t h e  shock absorber t h a t  keeps 

each l e g  fully extended and shock absorber f r i c t i o n  force. For the  hard 

surface computer program an i t e r a t i o n  i s  performed between t h e  shock ab- 

sorber  force and crushing of t h e  footpad. For t h e  soft-surface vers ion,  

i n i t i a l l y ,  no footpad crushing occurs and i t e r a t i o n  occurs between shock 

absorber forces and the  i n e l a s t i c  surface bearing s t rength which increases 

l i n e a r l y  with penetrat ion depth. The sof t -sur isce program a l s o  includes 

t h e  va r i a t ion  i n  e f f e c t i v e  cross-sectional areas of t h e  landing gear  l e g  

s t r u c t u r e  and o the r  spacecraf t  components with penetration depth. 

= 38.25 inches,  
P 

= 40.5 inches,  a = 18O. The input forces  include var ia t ions in  shock 

The landing dynamics computer program has been used t o  s i z e  and tune 

t h e  shock absorber and crushable block parameters t o  meet t h e  desired 



decelerat ion l e v e l s  and maximize toppl ing s t a b i l i t y .  

and ac t  t o  s t a b i l i z e  t h e  spacecraft against toppling. 

t h e  blocks begins l a t e r  i n  the  motion and in  p a r a l l e l  with t h e  l e g  forces pro- 

viding weight e f f ic iency  i n  the energy absorption required a t  t h e  higher land- 

ing v e l o c i t i e s .  

22) crushes t o  ac t  as an impact l i m i t e r  for t h e  landing gear. 

load for t h e  cy l indr ica l  portion is higher than t h e  t y p i c a l  applied loads. 

Therefore, crushing of t h i s  portion occurs usual ly  only t o  accommodate 

small protuberances. 

The legs  contact f i r s t  

The crushing act ion of 

Normally, only t h e  conical portion of t h e  footpad (Figure 

The crushing 

The damped, spring-back action of t h e  shock absorber is a v i t a l  f a c t o r  

i n  providing toppl ing s t a b i l i t y  without excessive l e g  length (or addi t iona l  

l e g s ) .  

s impl ic i ty  i n  attainment of post-landing s t a t i c  s t a b i l i t y ,  and by s t r u c t u r a l  

configuration and Centaur shroud considerations. The landing system includ- 

ing t h e  te lescoping lock s t r u t s  ( t o  fo ld  each landing gear)  and t h e  crush- 

able  blocks weighs about 6% of the  landed weight. 

The choice of t h r e e  legs was dic ta ted  pr imari ly  by a des i re  f o r  

The toppl ing s t a b i l i t y  has been examined by cmputa t ion  f o r  a vide 

var ie ty  of spacecraf t  and landing conditions resu l t ing  i n  two-dimensional 

motion of t h e  Spacecraft. 

t o  es tab l i sh  toppl ing s t a b i l i t y .  

seconds. For t h e  two-dimensional motions, t h e  c r i t i c a l  s t a b i l i t y  cases 

a r i s e  when a s ing le  leg points  u p h i l l  and t h e  l a t e r a l  ve loc i ty  is e i t h e r  

u p h i l l  (pos i t ive)  or downhill. 

occurs i n  t h e  downhill direct ion a f t e r  t h e  pi tching impulse imparted by t h e  

u p h i l l  s ing le  leg  contact .  

l e g  forces)  a r e  experienced when t h e  s ing le  l e g  poin ts  downhill. 

s t a b i l i t y  boundaries a r e  es tabl ished for c r i t i c a l  values of combined v e r t i c a l  

Three seconds i n  r e a l  time i s  general ly  s u f f i c i e n t  

The in tegra t ing  time period i s  0.002 

Bote, for t h e  u p h i l l  case,  toppl ing s t i l l  

The maximum angular accelerat ion (and maximum 

Toppling 

and l a t e r a l  touchdown veloci ty  as sham for parameter var ia t ion  i n  Figures 6-9 

~~~~ ~~ 
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f o r  landings on a hard surface. For these f igures  t h e  spacecraft i s  oreinted 

with t h e  s i n g l e  l e g  u p h i l l .  

Figure 6 shows var ia t ion  with lunar surface f r i c t i o n  coef f ic ien t  (11). 

Since 11 i s  not defined it has been var ied over a l a r g e  range. 

LJ = 1 is s a f e  for both s t a b i l i t y  and load predic t ion  purposes. 

of t h e  region of i n s t a b i l i t y  fo r  u p h i l l  landings is  f a i r ly  s e n s i t i v e  t o  

f r i c t i o n  coef f ic ien t .  

approximation (independent of slope) assuming no l e g  def lect ion and the  land- 

i n g  energy converted t o  r i g i d  body pi tching about t h e  two l e g s  opposed 

by t h e  lunar  gravi ty .  

t h e  computer runs which do not apply at extreme f r i c t i o n  leve ls .  Another 

important lunar  surface c h a r a c t e r i s t i c ,  s i t e  slope, i s  shown in  Figure 7. 

Five degree changes i n  s lope a f f e c t  l a t e r a l  ve loc i ty  capabi l i ty  about 2 fps. 

Note t h a t  there  is no u p h i l l  i n s t a b i l i t y  f o r  t h e  15' slope, as i n  Figure 6 

s ince  Figure 7 i s  f o r  zero spacecraf t  incidence ( 0  i n  Figure 5 ) .  

In  general 

The s i z e  

The s t r a i g h t  l i n e  "approximated abutment" is a simple 

only 

i s  an extrapolat ion of The implied i n f i n i t e  f r i c t i o n  

Tu0 important spacecraf t  par-ters,  center  of gravity height and leg  

length a r e  var ied  i n  Figures 8 and 9.  

i n  A cg can reduce allowable l a t e r a l  ve loc i ty  by 1 f p s  on t h e  downhill s ide  

and about 3 fps on t h e  u p h i l l  i n s t a b i l i t y .  As expected, l e g  length is  very 

e f f e c t i v e  i n  providing s t a b i l i t y .  The coalescence of the u p h i l l  and downhill 

regions of i n s t a b i l i t y  is shown a t  lower l e g  lengths  (30 inches) .  

Figure 8 shows atwo-inch increase 

Single  block crushing forces  a r e  2707 and 2070 pounds f o r  t h e  772 and 

643-pound vehic les ,  respect ively.  

Similar  s t a b i l i t y  boundary var ia t ions  have been establ ished f o r  var ia t ions  

i n  shock absorber parameters and other  landing conditions such as pi tch  r a t e  

and incidence. 

maximum allowable l a t e r a l  veloci ty  (from each s i d e  of the s t a b i l i t y  curves) 

independent of v e r t i c a l  ve loc i ty  versus spacecraf t  incidence (Figure 10). 

Many crossplots  may be obtained. One useful  form i s  p l o t t i n g  



Each point on these curves requires establishment of a complete s t a b i l i t y  

boundary. The coordinates of Figure 10 are s ign i f i can t  s ince  i n  t h e  f l i g h t  

control  system t h e  spacecraf t  lateral veloci ty  and incidence a re  correlated 

as shown by the  3o and 100 dispersion e l l i p s e s .  The parameter i n  t h i s  p l o t  

then allows se l ec t ion  of a maximum A cg value. 

VEHICLE TESTING 

The primary consideration i n  landing t e s t s  f o r  a lunar  vehicle  is t h e  

presence of approximately 1/6 gravi ty  f i e l d  at  the  lunar  surface compared t o  

ea r th .  

gravi ty  o r  t o  simulate lunar  gravity.  

The choice i s  e i t h e r  t o  s ca l e  t h e  t es t  vehicle t o  operate i n  e a r t h  

Some s ign i f i can t  s ca l ing  parameters f o r  dynamic s imi l a r i t y  of a r i g i d  

body ea r th  gravi ty  model of  equal mass t o  the  lunar  spacecraft  are shown i n  

Figure 11. These scal ing c r i t e r i a  were obtained by normalizing t h e  equations 

from t h e  landing dynamics computer program. 

equations have been divided by mass so t h a t  all parameters are per s lug  of 

spacecraf t  landed m s s .  It i s  seen t h a t  spr ing,  damping and crushable block 

forces  are higher by a f a c t o r  of 6.06 ( t h e  gravi ty  r a t i o )  on the  model, in-  

dependent of  geometric s i z e  r a t io ,  n. 

proport ional  t o  veloci ty  squared and spr ing force t o  scaled length. ) 

I n  the  program t h e  dimensional 

(Note t h a t  o r i f i c e  damping force i s  

, In general ,  t he  higher forces present  problems i n  model s t r u c t u r a l  design 
l 

and proper mass d i s t r ibu t ion .  Landing forces  would be equal only i f  model 

mass were roughly 1/6 of t h e  spacecraft .  

bined, then t h e  p o s s i b i l i t y  exis ts  of using at  l e a s t  sone of t h e  lunar space- 

c r a f t  hardware and achieving force simulation. For t h i s  s ca l ing ,  crushable 

blocks and spring constants are i d e n t i c a l  and the  o r i f i c e  damping coe f f i c i en t  

I f  fu l l - s i ze  and 116 m a S s  a r e  com- 
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must be reduced by 1/6 i n  t he  model. Achieving 116 m a s s ,  however, i n  t h e  

model may result i n  lack of s i m i l a r i t y  i n  m a s s  d is t r ibut ion.  I n  t h e  case 

of  Surveyor, t h i s  type of sca l ing  would r e s u l t  i n  landing gear mass of about 

30% of  the  model m a s s  compared t o  6% f o r  t h e  luna r  spacecraft .  

The problem of model mass d i s t r ibu t ion  was r a i sed  quite ear ly  i n  t h e  

Surveyor program when a 1/k s i z e ,  one s lug  m a s s  dynamic model w a s  constructed 

and drop t e s t e d  i n  ea r th  gravi ty .  The model i s  shown during a drop i n  Figure 

1 2 ,  where a pendulum has been used t o  impart l a t e r a l  velocity and control  

i n i t i a l  incidence.  This model w a s  s t a b l e  compared t o  ana ly t i ca l  predict ions 

and much of t h e  disagreement appears t o  be assignable t o  excessive r e l a t i v e  

l e g  m a s s  i n  t h e  model. 

examination of 3-dimensional c r o s s h i l l  landings.  I n  addition it w a s  observed 

t h a t  crushable block length t o  diameter r a t i o s  must be kept down near uni ty  

for r e s i s t ance  t o  t e n s i l e  f a i l u r e  from s ide  loads. 

Another result of  th i s  phase was ea r ly  q u a l i t a t i v e  

Having i l l u s t r a t e d  some aspects of  ea r th  g rav i ty  t e s t i n g ,  what are t h e  

prospects f o r  l una r  gravi ty  simulation? Three methods have been considered: 

g rav i ty  component; lift force;  and dropping platform. 

The g rav i ty  component method is  i l l u s t r a t e d  in  Figure 13 where t h e  test  

model i s  suspended through its c.g. on a cable p a r a l l e l  t o  a plane incl ined 

9 . 4 O  from t h e  e a r t h  gravi ty  vector.  The angle is t h a t  required t o  provide 

luna r  g rav i ty  normal t o  t h i s  plane as a component of earth gravi ty .  Large 

va r i a t ions  i n  vehicle  displacement normal t o  t h e  surface could c rea t e  gravi ty  

va r i a t ions .  Other problems such as construct ion of t h e  s t eep  compound slope 

a l s o  are apparent.  

Center i n  some experiments involving walking and running i n  simulated lunar  

g rav i ty .  

This method has been explored a t  t h e  Langley Research 

The lift fo rce  method is shown i n  Figure 14. I n  t h i s  method a constant 
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l i f t i n g  force of about 5 / 6  ear th gravi ty  is  applied v e r t i c a l l y  through the 

center  of gravi ty  of t he  t e s t  model. 

t he  method appl ies  s t r i c t l y  f o r  only r i g i d  body t e s t i n g  but should be 

adequate when landing gear mass i s  small compared t o  vehicle  mass. 

is a necessary condition a l s o  for t h e  gravi ty  component method above.) One 

method f o r  providing a nearly constant lift force i s  t h e  use of a pis ton i n  

an air cyl inder  manifolded t o  a tank of volume l a rge  compared t o  t h e  cylinder.  

This method has been used i n  simulating wing  lift i n  a i r c r a f t  landing gear 

drop tests and has been fu r the r  developed at Hughes f o r  lunar gravi ty  sim- 

u l a t ion  on Surveyor. 

can be avoided and w i l l  be described later. 

Since gravi ty  simulation is lumped, 

(This 

The use of a long cable t o  minimize gravi ty  va r i a t ions  

A r t i f i c i a l  gravi ty  can be produced by regulat ing t h e  accelerat ion of a 

dropping platform with counterweights as shown in Figure 15. 

condition is  achieved by making counterweight mass about ones l even th  of  t h e  

The required 

platform mass. 

ping t h e  vehicle  onto t h e  f a l l i n g  platform provided platform/vehicle mass r a t i o  

i s  large.  

t o  achieve 3-4 seconds of  tes t  time necessary f o r  many touchdown conditions.  

Aerodynamic forces may a l so  be a problem at the  longer test  times. 

versions of  t h i s  method have been invest igated at the  Langley Research Center. 

Complete simulation can be achieved (neglect ing drag) by drop- 

The primary disadvantage i s  t h a t  a 200-foot platform drop is required 

P i l o t  

Gravity simulation w a s  selected as appropriate  f o r  Surveyor s ince  it is 

i n  a s i z e  range f eas ib l e  f o r  full-scale t e s t i n g  and because of t he  desirg t o  

test  a c t u a l  landing system hardware. The l i f t - f o r c e  method w a s  considered 

the  most p r a c t i c a l  method f o r  examining t h e  toppl ing and other  gross landing 

cha rac t e r i s t i c s .  A schematic of t h e  Hughes lunar  drop tes t  f a c i l i t y  i s  shown 

in Figure 16. 

applied through a unique ro l l i ng  pul ley.  

The air-lift method of supplying t h e  "anti-gravity" force is  

The pulley r o l l s  on a ho r i zon ta l  
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t rack  allowing vehicle l a t e r a l  motion while maintaining a v e r t i c a l  lift force. 

The l i f t i n g  force is  provided equally by two matched air cyl inders  connected 

t o  a common air tank.  The moving p a r t s ,  pul leys ,  cables and pis tons weigh 

l e s s  than 10 pounds. Fr ic t ion  is  about 25 pounds. 

A photograph of the  drop t e s t  f a c i l i t y  showing the T-1 drop t e s t  vehicle  

i s  shown i n  Figure 17. The T-1 vehicle  i s  being prepared fo r  a drop on a 15- 

degree simulated rough slope. The avai lable  drop area i s  20 f e e t  wide and 40 

f ee t  long. The g r i d  spacings in t h e  photograph a r e  one foot .  The drop p la t -  

form is constructed of 12" x 12" beams l a i d  on 6 x 12 j o i s t s  supported on 6 x 

6 columns and i s  designed t o  absorb l e s s  than  1/22 of the vehicle  landing energy. 

The T-1 vehicle  is a r i g i d  body, fu l l - sca le  dynamic model using ac tua l  

B a l l a s t  weights are adjusted i n  pos i t ion  on t h r e e  landing system hardware. 

rack-type frames t o  vary i n e r t i a l  p roper t ies  of t h e  vehicle. 

shown mounted on t h e  pendulum used t o  impart l a t e r a l  velocity. 

v e r t i c a l  v e l o c i t y  a re  control led by t h e  swing of t h e  pendulum and t h e  port ion 

of v e r t i c a l  drop height i n  free f a l l  (ear th  grav i ty)  and t h a t  under t h e  ac t ion  

of t h e  lift force ( lunar  grav i ty) .  

and s t r a i n  gages on legs  and some frame members, shock absorber loads and de- 

f l e c t i o n s ,  vehicle  pi tching a t t i t u d e ,  load c e l l  f o r  l i f t - force  and high speed 

motion p ic tures .  

The vehicle  is 

Latera l  and 

Instrumentation consisted of accelerometers 

About 80 'drops have been made with t h e  T-1 vehicle on smooth, rough, and 

soft slopes. The first series of drops YBS conducted ear ly  i n  1962 (vehic le ,  

T-1 (A-25)) followed e a r l y  i n  1963 with another se r ies  using a s l i g h t l y  l i g h t e r  

vehicle  (T-1 (A-21)) with a higher  center  of gravity. 

made with the. s i n g l e  l e g  u p h i l l  or downhill t o  v e r i 0  t h e  most severe top- 

Most of t h e  drops were 

pl ing e d  load conditions associated with two-dimensional motions. 

C r o s s h i l l  drops were performed t o  examine, b r i e f l y ,  the three-dimensional 

behavior. 

Some 

&en at l a t e r a l  ve loc i ty  of 12 f p s ,  t h e  c rossh i l l  landings were 
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f a i r l y  uneventful and excessive r o l l  r a t e s  were not rea l ized .  

The smooth sur face  w a s  the 12-inch beams. The rough surface w a s  created 

by fastening 2 and 4-inch high blocks t o  t h e  wood surface on 16-inch centers .  

The s o f t  surface was composed of the three-foot deep bed of hardwood shavings 

and sawdust. Other mater ia ls  were invest igated such as sand, talcum, popcorn 

but  t h i s  mixture w a s  found t o  give the c loses t  dynamic approximation t o  the  

desired soft surface bear ing s t rength of 10  ps i  per foot  of  penetration. 

T-1 ( A - 2 5 )  t e s t  r e s u l t s  on rough and smooth 15-degree slopes are  shown 

i n  Figure 18. The agreement with theory is  f a i r l y  good. The e f f e c t  of t h e  

average higher f r i c t i o n  on the rough slope is  evident. Note t h a t  the  effec- 

t i v e  f r i c t i o n  l e v e l  may vary somewhat from drop t o  drop on t h e  rough s lope 

because of random block encounters. Similar  r e s u l t s  of a 25-degree s l o p e a r e  

shown i n  Figure 19. The agreement here i s  not as good as f o r  t h e  15-degree 

slope. The lack of improvement of  the  u p h i l l  i n s t a b i l i t y  f o r  a smooth s lope 

may be t h a t  u p h i l l  f r i c t i o n  i s  not  s i g n i f i c a n t  on a s t e e p  s lope.  

Results f o r  a l i g h t e r  vehicle ,  T-1 (A -211 ,  with higher center  of gravi ty  

a r e  s h a m  i n  Figure 20. Again the  agreement with theory i s  good. Tests on 

t h e  s o f t  s lope are shown i n  Figure 21. The agreement i s  not t o o  good due 

proably t o  some undesirable ,  unavoidable spr inginess  i n  t h e  wood shavings. 

The attempt w a s  made t o  reduce t h e  springback by addi t ion of f i n e r  sawdust 

bu t  a res idua l  amount of springback w a s  sti l l  i n  evidence. 

STRUCTW DYNAMICS STUDIES 

The s t r u c t u r a l  dynamics phase. of t h e  soft-landing program has involved 

touchdown s t r u c t u r a l  response computer analyses based on modal v ibra t ion  t e s t s  

and experimental confirmation in drop t e s t i n g  a fu l l - sca le  s t r u c t u r a l  dynamic 

model ( S - 2 ) .  
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The s t r u c t u r a l  dynamic analysis  of the spacecraft  is a modal analysis  

i n  which responses of various spacecraft  components are obtained by addition 

of t h e  r i g i d  body and e l a s t i c  modes. These responses r e su l t  from t h e  appl i -  

cat ion of forces  on the footpad of each landing gear and on each crushable 

block obtained from t h e  r i g i d  body landing dynamics program. 

model lumps the  spacecraf t  i n t o  25 m a s s  elements with a t o t a l  of 97 degrees 

of freedom. The l a r g e r  masses (e .g . ,  a major equipment compartment) a r e  

assigned s i x  degrees of freedom. Three t r a n s l a t i o n a l  degrees s u f f i c e  fo r  

many of t h e  smaller masses. 

The e l a s t i c  

The normal modes of  t he  spacecraft  were determined from a modal vibrat ion 

tes t  using a number of  small shakers.  

(S-2) of Surveyor w a s  used f o r  t h i s  purpose. 

c r a f t  i n  i ts  s t r u c t u r a l  elements using d- b a l l a s t  of proper i n e r t i a l  pro- 

p e r t i e s  t o  replace spacecraf t  components. For t e s t i n g  i n  t h e  landed config- 

u ra t ion ,  5-2 w a s  supported on very s o f t  compression springs a t  each footpad. 

The modes were exci ted by 25-pound electrodynamic shakers placed where l a rge  

responses were expected. 

phase and magnitude. For most modes t h i s  w a s  accomplished with two o r  t h ree  

shakers with a maximum of e igh t  used i n  some cases. 

was  used t o  survey and e s t ab l i sh  t h e  response i n  each mode. The modal survey 

yielded t e n  e l a s t i c  normal modes i n  the  frequency range from 1 2  t o  60 cps. 

A fu l l - s ca l e  s t r u c t u r a l  dynamic model 

S-2 i s  similar t o  a f l i g h t  space- 

A mode was tuned i n  by adding shakers i n  proper 

A roving accelerometer 

The s ix t een  modal equations corresponding t o  t h e  s i x  r i g i d  body and t e n  

e l a s t i c  modes have been solved i n  an IBM 7090 computer program t o  y i e l d  t h e  

dynamic response of t h e  spacecraf t  f o r  various touchdown conditions.  

A considerat ion is  t h e  v a l i d i t y  of using landing forces (on footpads 

and crushables)  from t h e  r i g i d  body analysis  d i r e c t l y  i n  t h e  e l a s t i c  analysis.  

This question w a s  examined i n  an e a r 4  d i r ec t  analog study of spacecraf t  s t r u -  

c t u r a l  response perfonned f o r  Hughes by Computer Engineering Associates (CEA).  



Computer runs were made f o r  an e l a s t i c  model at touchdarn and f o r  t h e  same 

conditions with e l a s t i c  members r igidized.  Comparison has shown only s m a l l  

d i f ferences i n  t h e  applied loads for  t he  e l a s t i c  and r i g i d  body cases. 

The 5-2 s t r u c t u r a l  dynanic model has been drop t e s t e d  t o  prove t h e  design 

and t o  compare t e s t  responses with those predicted by t h e  t r a n s i e n t  modal 

analysis .  

f l a t ,  smooth surface.  

center  of gravi ty  and use of the l i f t - f o r c e  technique f o r  lunar gravi ty  

simulation. 

response is i n  t h e  i n i t i a l  phase of touchdown when decelerat ions are l a rge  

compared t o  e i t h e r  ea r th  o r  lunar gravi ty .  

shown i n  Figure 23. 

required t o  provide t h e  same energy d i s s ipa t ion  as i n  t h e  ea r th  drop tests. 

The difference results from the added po ten t i a l  energy acquired by t h e  

vehicle i n  ea r th  gravi ty  a f t e r  f i r s t  contact with the  surface.  

Figure 22 shows the S-2 vehicle p r io r  t o  a v e r t i c a l  drop on a 

The design of t h i s  vehicle precluded access t o  i t s  

Earth g rav i ty  drops were used s ince the  s ign i f i can t  s t r u c t u r a l  

The drop test conditions are 

The equivalent touchdown veloci ty  shown is t h e  lunar value 

S-2 was  instrumented with s t r a i n  gages on landing gear and key s t r u c t u r a l  

members and accelerometers on s ign i f i can t  m a s s  components. High speed motion 

pictures  were taken on each drop. 

Earth gravi ty  w a s  used i n  t he  rigid-bow landing analysis  t o  co r re l a t e  

t he  magnitude and phasing of the various footpad and crushable block forces 

i n  t h e  drop tests. These forces were used i n  t h e  t r ans i en t  modal analysis 

t o  evaluate  e l a s t i c  response fo r  test  comparison. The agreement w a s  quite 

good as s h a m  by examples i n  Figures 24 and 25. 

a t ion  of dynamic bending moments i n  the  v e r t i c a l  mast supporting t h e  high- 

gain antenna and s o l a r  panel during drop No. 3. Figure 25 shows t h a t  touch- 

down accelerat ions during drop No. 1 agree w e l l  with analysis  and are below 

the  m a x i m u m  design l eve l s  i n  a major equipment compartment. 

Figure 24 shows t h e  correl-  
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CONCLUSIONS 

:en a ve iable t o o l  i n  es tabl  Landing dynamics computer analysis has ;h- 

i n g  lunar soft-landing system design and i n  describing spacecraf t  s t a b i l i t y  

and loads f o r  various touchdown and lunar surface conditions. 

simulation w a s  found t o  be preferable  t o  sca l ing  f o r  earth g rav i ty  t e s t ing .  

A l i f t - f o r c e  technique has proven t o  be a simple, e f f ec t ive  method of lunar  

gravi ty  simulation f o r  appl icat ion t o  rigid-body model t e s t i n g .  

of a fu l l - sca l e  dynamic model under simulated luna r  gravi ty  have ve r i f i ed  the 

landing system hardware and the  t e s t  method and have provided confidence i n  

ana ly t i ca l  predict ions.  Similar  confidence e x i s t s  i n  predict ing s t r u c t u r a l  

loads and component accelerat ions under various touchdown conditions based on 

co r re l a t ions  between modal analysis based on modal vibrat ion data and drop 

t e s t s  of a fu l l - sca l e  s t r u c t u r a l  dynamic model. 

Lunar gravi ty  

Drop of  t e s t s  
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SURVEYOR SPACECRAF-T (A-21) BT"- \HIGH-GAIN ANTENNA 
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Figure 1 
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Figure 2 
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LUNAR LANDING CONDITIONS 

LUNAR SURFACE 

0 SLOPES UP TO 15 deg 

PROTUBERANCES UP TO 10 cm 

0 SURFACE HARDNESS: 25,000 psi (HARD) TO 50 psi (SOFT), REQUIRED 

SURVIVAL ON SURFACE WITH HARDNESS GRADIENT 10 psi 
PER FOOT DEPTH, DESIRED 

0 SURFACE FRICTION NOT DEFINED BUT VARIABLE 

SPACECRAFT TOUCHDOWN REQUIREMENTS 

0 VERTICAL VELOCITY < 15 fpr, LATERAL VELOCITY < 5 fpr WITH RESPECT TO FLIGHT 
CONTROL DESIGN 

0 STRUCTURAL MECHANIZATION TO 20 fps, VERTICAL AND 7 fps LATERAL VELOCITY 

0 LANDING SHOCKS ON COMPONENTS AND PAYLOAD, < 40 EARTH g REQUIRED, 
< 25 EARTH g DESIRED 

Figure 3 

TERMINAL LUNAR SURFACE PICTURES FROM RANGER xrt 
6225 A.M. PDT JULY 31,1964 
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Figure 4 



TOUCHDOWN DYNAMICS- COMPUTER 
PROGRAM MODEL 
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STABILITY BOUNDARY VARIATION 
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STABILITY BOUNDARY VARIATION WITH SITE SLOPE 
(INITIAL INCIDENCE = 0 DEGREES) 
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STABIL ITY BOUNDARY VARIATION WITH CENTER OF 
G R A V I T Y  HEIGHT 
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STAB1 L I T Y BO U N OARY VARIATION 
WITH LEG LENGTH 
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PARAMETER RATIOS FOR SCALED TEST MODEL 

RATIO O F  MODEL TO 
SPACECRAFT PARAMETERS 

PARAMETER (FOR EQUAL TOTAL MASSES) 

I LENGTH n 

I TIME 

DAMPING CONSTANT q q  
VISCOUS DAMPER 
ORIFICE DAMPER I/n 

6.06 SPRING CONSTANT - n 

6.06 CRUSHABLE BLOCK FORCE 

ACCELERATION OF GRAVITY" 6.06' 

ANGLES 

VELOCITIES 

ACCELERATIONS 

1 

6.06 

'ACCELERATION OF GRAVITY USED I S  32.17 ft/sec2 ON THE EARTH 

A N D  5.31 ft/rec2 ON THE MOON 

Figure 11 

DROP TESTING OF 1/4SCALE 
SPACECRAFT MODEL 

Figure 12 



GRAVITY COMPONENT METHOD 
OF LUNAR GRAVITY SIMULATION 

LANDING SURFACE 

CABLE ALIGNING PULLEY\ 1/ 

" ANTI-GRAVITY'' FORCE = 
0.835 (EARTH g) 

CABLE ATTACHED TO VEHICLE 
CENTER O F  GRAVITY 
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CABLE TO COUNTERACT 
UNDESIRED GRAVITY 

SIMULATED LUNAR GRAVITY = 
0.165 (EARTH gl 

CA8LE ATTACHED TO VEHICLE 
CENTER OF GRAVITY 

& 
Figure 13 

LIFT F O R C E  METHOD OF 
LUNAR GRAVITY SIMULATION 



DROPPING P L A T F O R M  METHOD OF 
LUNAR G R A V I T Y  S I M U L A T I O N  

TRIGGER TO RELEASE PLATFORM, -TEST 
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Figure 15 

LANDING SURFACE 

ENERGY ABSORBER TO I STOP COUNTERWEIGHTS 
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SCHEMATIC OF LUNAR DROP TEST F A C I L I T Y  
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Figure 16 



T-l DROP TEST FACILITY A-ND VEHICLE 

Figure 11 

T-l (A-25) TEST RESULTS ON ROUGH 
AND SMOOTH 15 DEG SLOPES 
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T - I  (A-25) TEST RESULTS ON ROUGH AND SMOOTH 
25 DEG SLOPES 

I 

20 

TEST POINTS ANALMK: WRMS 
0 STABLE ON SMOOTH SLOPE SPL\cEcRLIFT WEIGHT = 772 Ibr ' 5 1  0 S T A B ~ O N R O U G ~ S L O P E  1 ~ c g  RAMUSOFGYRATK)N=32in. , 1 Y 

= 18 in. @ UNSTABLE ON ROUGH. STABLE SITE SLOpE 
ON SMOOTH SLOPE NITIAL INCIDENCE = -5 deg 

x UNSWLEONSMOOTH NITlAL PITCH RATE * -I-/SOC 
AND RWGH SLOPES 

0 
-15 -10 -5 0 5 0 b 

LATERLIL MLCClTY, FEET PER SECOND 

Figure 19 

T-l (A-2l)TEST RESULTS ON ROUGH 15 DEG SLOPE 
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Figure 20 



T-l (A-21) TEST RESULTS ON SOFT15 DEG SLOPE 
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S-2 VEHICLEPRIOR TO 
VERTICAL DROP TEST 

Figure 22 



S-2 DROP TEST CONDITIONS 

VEHICLE INCIDENCE, deg 

SITE SLOPE, deg 

DROPS 
CONDITION 
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Figure 23 
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Figure 24 



VERT1 C AL ACCELERATION 
OF C O M P A R T M E N T  A 
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ADDRESS BY 

DR. RAYMOND L. B I S P L I N G H O F F  

A S S O C I A T E  ADMINISTRATOR FOR ADVANCED RESEARCH AND TECHNOLOGY 

NATIONAL AERONAUTICS AND S P A C E  ADKLNISTRATION 

SUMMARY OF REMARKS ON 

SIMULATION I N  AEXONAU?ICAZ, AND SPACE TECHNOLOGY 

5 
I n  order t o  prepare t o  address the  members of t h i s  conference ton ight ,  

it seemed l i k e  a good idea t o  consult Webster's dictionary t o  f i n d  out t h e  

d e f i n i t i o n  of t h e  word "simulation". For those of you who were unable t o  

prepare yourself  f o r  t h i s  meeting, I can repor t  that Webster describes sim- 

ula t ion  as "the ac t  of s imulat ing o r  assuming an appearance which is feigned, 

or  not t r u e ;  pretense or  profession meant t o  deceive." He describes fur ther-  

more, by example, c e r t a i n  prac t i t ioners  of simulation as "men a t t i r e d  i n  

greasy black s u i t s  with dingy black neckt ies  - a l l  gif ted w i t h  a sanct i -  

monious s n u f f l e ,  a l l  avid fo r  bu t te red  t o a s t  and muffins". Since I have 

been unable t o  r e l a t e  Webster t o  what I have observed here, o r  even t o  the 

fa re  which w e  have received f o r  dinner, I have concluded that we have simply 

found another case where science has outrun Webster's dictionary. 
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This brings t o  mind a request received some time ago by t h e  NASA fo r  

a statement on the  number and locat ion of a l l  s imuh to r s  possessed by the  

Bgency. It turned out  in t h i s  case t h a t  t he  requester desired t o  h o w  

simply how many f l i g h t  simulators ex i s t ed  i n  which the  human being played 

his appropriate r o l e  as a subsystem i n  t h e  control  apparatus. 

b e t t e r  than anyone, such simulators are really only one c l a s s  of a l a rge  

number of c lasses  of simulators and simulation devices i n  t h e  na t ion ' s  aero- 

nau t i ca l  and space program. Simulation i s ,  i n  f a c t ,  at the  hear t  of v i r t u a l l y  

everything we do i n  t h e  laboratory and even i n  many f l i g h t  experiments. 

more I think about it the more I a m  convinced t h a t  you could not have chosen a 

top ic  vhich covers more ground i n  our nat ion 's  aeronautical  and space pro- 

gram. The c l a s s i c a l  simulator of atmospheric f l i g h t ,  the wind tunnel  i n  a l l  

of i t s  various forms, i s  replaced as we move beyond t h e  atmosphere, by t h e  

vacuum chamber. 

by t he  worm-like appearance of re turn flow wind tunnels.  

uishing features  we spheres which appear from the  air t o  range i n  s i z e  from 

marbles t o  basketbal ls .  Most of these are f o r  t he  purpose of simulation and 

hence are simulators - and although they a re  not necessar i ly  s t a f f e d  

"men i n  greasy black suits with dingy black neckties" a good pa r t  of t h e i r  

professional  operators are engaged i n  t h e  arts and sciences which a r e  the  

subject  of t h i s  conference. 

A s  you know 

The 

An a e r i a l  view of  a NASA Center a decade ago w a s  dcininated 

Now t he  dis t ing-  

This h i s to ry  of applied science and engineering is really a h i s to ry  of 

simulation - a h i s t o r y  of searching ,for methods of observing ap r io r i  the 

behavior of engineering systems and of varying the  parameters of such systems 

i n  order t o  seek optimum resul ts .  The approach of t he  pure s c i e n t i s t  seeking 

t o  explain observable phenomena likewise leans heavily on simulation and ana- 

logs. The human mind being what it i s ,  it is na tu ra l  t h a t  hypotheses should 
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be constructed employing analogies with known and famil iar  phenomena. 

amusing instance of t h i s  approach w a s  the  "law of octaves" proposed by New- 

land. Here the  resemblances among t h e  d i f fe ren t  chemical elements were for-  

mulated on t h e  bas i s  of an analogy with musical notation. 

l a w  w a s  re jec ted  and laughed a t  by h i s  contemporaries, the proposal w a s ,  i n  

f a c t ,  t h e  forerunner of the  per iodic  t a b l e  of the  elements. 

An 

Although Newland's 

Mechanical models have long been employed i n  physics even as a means of  

describing and studying the behavior of e lec t rons  and protons as i n  t h e  case 

of Bohr's c l a s s i c a l  model of t h e  hydrogen atom. 

been a tendency t o  discard the  use of such models and they a r e  replaced by ab- 

s t r a c t  mathematical re la t ionships .  Mathematical t o o l s  themselves serve  as 

simulators i n  t h e  physical  sciences j u s t  as an a i rp lane  model i n  a wind tunnel  

o r  a spacecraf t  model i n  a vacuum tank. Mathematics d i f fe rs  from t h e  na tura l  

sciences i n  t h a t  it i s  based on axioms which do not necessar i ly  rest on ob- 

I n  recent years t h e r e  has 

served phenomena i n  nature .  

legi t imate  branch of mathematics whether or not t h e r e  ex is t s  i n  t h e  r e a l  

universe e n t i t i e s  with the  propert ies  of Euclidean l i n e s  and planes. 

ever, when a port ion of science has pr inc ip les  which coincide with t h e  axioms 

of some branch of mathematics, then a l l  t h e  theorems based on these  axioms 

can be in te rpre ted  i n  terms of t h e  physical  p r inc ip les .  Thus applie'd mathe- 

mat ics ,  coupled with the  modern computer, provides us with universal  and re- 

l a t i v e l y  inexpensive simulation. In s p i t e  of t h e  s t r ides  which have been 

made i n  t h e  development of computing machinery, the  f i e l d  of appl ied mathe- 

matics should be encouraged and brought t o  bear much more vigorously i n  t h i s  

country than  i s  now t h e  case. 

For  example, plane Euclidean geometry i s  a 

How- 

A s  every appl ied s c i e n t i s t  knows, p r a c t i c a l l y  a l l  simulators provide 

something l e s s  than complete s imulat ion and sometimes introduce spurious 
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e f f e c t s .  A chemist who displays a wooden model of an organic compound does 

not expect h i s  audience t o  believe t h a t  carbon a t o m  a r e  black and o q g e n  

atoms blue.  The successful  engineer or  s c i e n t i s t  i s  one who can s t r i p  away 

i n  the  process of simulation a l l  of t h e  extraneous unessent ia l  parameters and 

who knows which of t h e  features  o f  h i s  model a re  appropriate and which a re  

i r re levent .  A metal beam t o  an engineer i s  a mass of homogeneous e l a s t i c  

i so t ropic  mater ia l  subjected t o  boundary condi t ions;  t o  t h e  chemist a col- 

l e c t i o n  of molecules; t h e  metal lurgis t  an assemblage of grains and c r y s t a l s ;  

t o  t h e  s o l i d  s t a t e  phys ic i s t  a s w a r m  of nuclei  and electrons.  Each constructs 

a model at h i s  own l e v e l  of abstract ion and understanding and by applying 

reasoning he i n f e r s  new information. Unfortunately each model provides 

p a r t i a l  simulation and none represents t h e  t o t a l  i n t r i n s i c  r e a l i t i e s  of nature. 

We are  of ten confronted with the i n t e l l e c t u a l  exercise  of in te rpre t ing  

simulation r e s u l t s  i n  t h e  l igh t  of actual  experience. The "method of agree- 

ment" is an example of a r u l e  of science,  o r  perhaps I should say of common 

sense,  which we all employ daily. It s t a t e s  t h a t  i f  t h e  circumstances leading 

up t o  a given event have one factor  i n  common, t h a t  f a c t o r  may be t h e  cause 

sought. Even such an obvious ru le  has i t s  p i t f a l l s  as witnessed by t h e  

s c i e n t i s t  who enjoyed scotch and soda at  a party. The next morning he f e l t  

badly, s o  t h a t  night he t r i e d  rye and soda which resu l ted  i n  t h e  same dis- 

t r e s s i n g  symptoms. The t h i r d  night he switched t o  bourbon and soda with 

similar r e s u l t s .  Acting l i k e  a t r u e  s c i e n t i s t  and analyzing t h e  evidence by 

employing t h e  "method of agreement" he concluded t h a t  t h e r e a f t e r  he would 

omit soda f o r  h i s  drinks. 

O u r  a b i l i t y  t o  develop the engineering systems of atmospheric and space 

f l i g h t  depends i n  t u r n  upon our a b i l i t y  t o  simulate i n  t h e  laboratory and there-  

by study new concepts as wel l  as s y s t e m  and t h e i r  components p r i o r  t o  f l i g h t .  

a 
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In general ,  two kinds of simulation f a c i l i t i e s  a r e  required. 

used t o  develop new concepts and physical understanding m a y  of ten be 

r e l a t i v e l y  small and inexpensive. I n  addi t ion there  are  required the  la rger  

simulation f a c i l i t i e s  needed f o r  the  ad-hoc t e s t i n g  and development of  sub- 

systems and systems i n  preparation f o r  f l i g h t .  

however, t h e r e  i s  needed a cer ta in  l e v e l  of knowledge of the arts and sciences 

Of  simulation. Certain s i m i l a r i t y  l a w s  f o r  e l a s t i c  s t ruc tures  were formulated 

as ear ly  as t h e  seventeenth century by Galileo. 

t o o l s  have been added s o  t h a t  modern engineers a r e  famil iar  with t h e  dimension- 

l e s s  var iab les  required t o  model a i rp lanes ,  surface vessels ,  s t r u c t u r e s ,  heat 

t r a n s f e r  systems, re-entry devices and many other  engineering systens.  Accu- 

r a t e  s imulat ion,  however, requires  physical  understanding of t h e  dimensionless 

var iables  required f o r  s imi l i tude  and the  development of t h i s  understanding 

is Just  as inportant  as t h e  development of f a c i l i t i e s .  

t o  physical understanding. 

cr ibed myst ical  power which it does not  possess. 8 wonder i f  t h e  Pi theorem i s  

s t i l l  being taught i n  t h e  sane w a y  t h a t  it w a s  taught t o  me by carefu l ly  choos- 

ing  i l l u s t r a t i o n s  where t h e  answers were already known, and benef i t ing  from 

these answers i n  t h e  construct ion of a solut ion.  

Those which a r e  

I n  addi t ion t o  f a c i l i t i e s ,  

Since that  t i m e  many useful  

There i s  no shortcut  

Dimensional analyses i s ,  f o r  example, o f ten  as- 

The na t ion ' s  plans f o r  increasing i ts  mastery of aeronaut ical  and space 

f l i g h t  are fami l ia r  t o  most of us. 

t h e  1970's and hypersonic commerical air  t ranspor ta t ion  i s  a dream which many 

expect t o  be rea l ized  before  t h e  turn  of t h e  century. We t a l k  of exploration 

of t h e  surface of t h e  moon, orb i t ing  manned space s t a t i o n s  and of manned ex- 

pedi t ion  t o  t h e  planets  and beyond. Have you stopped t o  consider t h e  impor- 

tance a n d d i f f i c u l t y  of ground simulation of these a c t i v i t i e s ?  Unless adequate 

means f o r  ground simulation can be employed, these ambitions w i l l  never get  

A supersonic t ranspor t  is desired ear ly  i n  
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beyond t h e  planning stage because of t h e  high expense of developing and test- 

ing i n  f l i g h t .  How can t h e  s t ruc ture  O f  a supersonic t ransport  v i t h  a 50,000 

hour l i fe t ime of cyc l ic  cooling, heat ing and loading be developed at  mini- 

mum weight and with maximum r e l i a b i l i t y ?  

near ly  s i x  years of real-time t e s t i n g  would be required. 

u la tors  a r e  being used t o  great  advantage a t  t h e  NASA's Langley and Ames Re- 

search Centers i n  evaluat ing the  p i l o t i n g  and handling q u a l i t i e s  of super- 

sonic  t ranspor t  a i r c r a f t  and i n  assessing t h e  compatibi l i ty  of such a i r c r a f t  

with t h e  airway t r a f f i c  control system. 

Research Center i s  being f i t t e d  with computers which w i l l  permit it t o  simulate 

a wide range of s t a b i l i t y  and cont ro l  charac te r i s t ics  i n  f l i g h t  including those 

of the  supersonic t ranspor t .  

formation in  time t o  influence t h e  design of t h e  supersonic t ranspor t .  

How s h a l l  we develop the  lightweight nuclear-electr ic  power systems 

Even i f  a f a c i l i t y  were ava i lab le ,  

Already ground s i m -  

A subsonic j e t  a i r c r a f t  a t  t h e  Fl ight  

Simulator s tud ies  such as these  w i l l  provide in- 

with 10,000 hour maintenance f r e e  l i f e t i m e  required f o r  spacecraf t  on-board 

power and e l e c t r i c  propulsion? Not only elaborate  f a c i l i t i e s  a r e  required 

but s i m i l a r i t y  l a w s  a r e  needed which w i l l  allow us to ext rac t  meaningful re- 

s u l t s  from t e s t s  conducted in l e s s  than real time. By what means can we s i m -  

u l a t e  t h e  environment of an a i r  breathing propulsion system f o r  Mach 6 f l i g h t  

o r  beyond? How can w e  achieve on t h e  ground a f u l l  or p a r t i a l  simulation of 

t h e  space environment including t h e  vacuum, t h e  f u l l  energy l e v e l s  of elem- 

entary and f i n i t e  p a r t i c l e s  and the  electromagnetic rad ia t ion?  There i s  much 

speculat ion concerning l i f e  behavior under zero g condi t ions,  and w e  general ly  

conclude t h a t  it is impossible t o  obtain long time simulation of zero g con- 

d i t ions  for  such s tudies .  The zero g environment a l s o  produces d i f f i c u l t  pro- 

blems f o r  t h e  engineer especial ly  i n  es tab l i sh ing  t h e  behavior of l i q u i d  and 

vapor systems. 
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These include posi t ioning of f lu ids  i n  propel lant  tanks and liquid-vapor 

e q u i l i b r i m  configurations i n  condensers and radiators .  

Liquid i n  a tank under normal one-g conditions r e s t s  on the  bottom i n  

the  manner famil iar  t o  a l l  of us i n  everday l i f e .  

whelming predominance of gravi ty  over surface tension forces. However, under 

zero g conditions,  t he  l i qu id  mass may assume an odd equilibrium configurat-  

i on ,  due now t o  t h e  predominance of surface tension forces q u i t e  unlike t h a t  

under normal conditions.  We have found it possible  t o  study these phenomena 

i n  a i r c r a f t  f l y ing  zero g f l i g h t  paths and by f r ee ly  f a l l i n g  bodies i n  a drop 

tower. A basic  understanding of t h i s  behavior has already been achieved i n  a 

100 ft drop tower at  t h e  L e w i s  Research Center and a 5M) ft tower i s  being con- 

s t ruc t ed  at Lewis  which w i l l  give us over t e n  seconds of zero g test  time i n  

an up and down test .  

This i s  due t o  t h e  over- 

These are but a few examples of progress i n  simulation t h a t  will be re- 

quired i n  order t o  sus t a in  nat ional  aeronaut ical  and space goals.  

c l e a r  t h a t  simulation technology m u s t  m a k e  great  s t r i d e s  over t h e  next decade 

i n  order t o  accomplish these ends. 

It is  qu i t e  

The f a b r i c  of our country's  technological soc i e ty  i s  woven from three 

p r inc ipa l  t h reads ;  government agencies such as t h e  NASA, industry;  and t h e  

univers i ty .  Each of  t hese  e n t i t i e s  must play a r o l e  i n  achieving a higher 

l e v e l  of simulation technology. 

and it w i l l  continue t o  be  involved. 

a f f ec t  na t iona l  s ecu r i ty  and our na t ion ' s  image i n  t h e  world. 

f a c i l i t i e s  required are c l ea r ly  beyond t h e  means of pr ivate  enterpr ise .  This 

has been t h e  business of NACA s ince i t s  founding in 1915 and later became t h e  

business of t h e  NASA when t h e  r e s p o n s i b i l i t i e s  f o r  space f l i g h t  were added by 

t h e  Space Act of 1956. 

The f ede ra l  government has been involved 

This is required since these  matters 

Many of t h e  

The continued development of simulation technology 
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and of proper f a c i l i t i e s  f o r  t h i s  purpose is one of the  primary respons ib i l i t -  

ies of the  NASA. Because of the  expense and t h e  long development and con- 

s t r u c t i o n  time of new f a c i l i t i e s ,  exceptional foresight  is required on t h e  

p a r t  of t h e  managers of t h e  NASA Centers. I n  re t rospec t ,  it i s  c l e a r  t h a t  

our country's preeminence i n  atmospheric f l i g h t  has been based very la rge ly  

on t h e  exis tence of NACA wind tunnels .  

I f  industry i s  t o  play i t s  t r a d i t i o n a l  ro le  of creat ing hardware, it 

m u s t  possess or  have access t o  t h e  t o o l s  f o r  ground simulation and develop- 

ment. 

contractors  and they must therefore  be provided them through government or  

o ther  pr iva te  f a c i l i t i e s .  

Possession of these  tools  w i l l  be c lear ly  impract ical  for  many of  our 

The univers i ty  w i l l  play a par t  through i t s  c l a s s i c a l  r o l e  of gaining 

and d i s t r i b u t i n g  knowledge. The mutually supporting functions of research 

and teaching give the  univers i ty  enormous leverage. 

plex soc i ty ,  technical  schools such as t h e  Virginia  Polytechnic I n s t i t u t e  

must assume more leadership than ever before .  The need here i s  f o r  qua l i ty  

and not quant i ty .  There i s  no shortage of s c i e n t i s t s  and engineers, nor is 

t h e r e  a shortage of unimaginative pro jec ts .  

qua l i f ied  s c i e n t i s t s  and engineers and new ideas .  The univers i ty ,  a c t i n g  as 

a c losely coordinated e n t i t y ,  as wel l  as i t s  individual  scholar ,  w i l l  be c a l l e d  

upon increasingly t o  a id  t h e  government at a l l  l e v e l s  i n  i t s  decision making. 

An even grea te r  r o l e  must be assumed i n  continuing education. As t h e  facul ty  

of VPI wel l  knows, t h e  engineer is in  the  most d i f f i c u l t  posi t ion.  The pract-  

i c ing  s c i e n t i s t  o r  engineer may soon need t o  spend one year  our of every t e n  

i n  refurbishment of h i s  technical  knowledge. A. C .  Montieth, former president  

of t h e  A. I .  E.  E . ,  has s a i d  that  "today's graduate engineer has a ha l f  l i f e  

I n  our increasing com- 

There i s  only a shortage of 
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of about t e n  years",  i n  other  words h a l f  of what he  knows w i l l  be obsolete 

i n  a decade. 

from now is not avai lable  t o  him today." This brings t o  mind the  c l a s s i c a l  

s to ry  of t h e  medical school dean who confessed t o  h i s  graduating c l a s s  t h a t  

ha l f  of what they have been taught w a s  i nco r rec t .  What is worse, s a id  t h e  

dean, we are  not sure which ha l f .  

Montieth adds t h a t  "half of what he w i l l  need t o  know t en  years 

The City of Washington is  strewn with r e l i c s  of  the p a s t ,  not  t h e  l e a s t  

of which are monuments. Most of these commemorate mil i tary o f f i ce r s  or  pol- 

i t i c i a n s ,  but  t h e  other  day I ran across one within a block of NASA head- 

quarters  i n  memory of t he  French inventor,  Daguerre', who developed t h e  daguer- 

roety-pe photographic process. 

t h e  in sc r ip t ion  "Photography, t h e  e l e c t r i c  telegraph and t h e  steam engine are  

t h e  t h r e e  g rea t  discoveries of t he  age. Not i n  f i v e  centuries of human pro- 

gress  have w e  seen such s t r i d e s  as these." Such a reminder brings home sharply 

a r ea l i za t ion  of t h e  enormous growth i n  science and technology s ince  the  erect-  

ion of t h a t  monument. 

gression. 

science and technology t h a t  already e x i s t s .  

This monument, which w a s  erected i n  1890, bears  

This growth seems t o  follow t h e  l a w  of geometric pro- 

I n  other  words, t he  growth i s  proport ional  t o  t h e  amount of 

Space technology i s ,  comparatively speaking, i n  the s t age  of t he  daguer- 

reotype photograph. I t s  continued growth is  ce r t a in  but it w i l l  depend very 

much on improved understanding of t h e  subject  matter of t h i s  conference. 

Thank you and good evening. 



' SENSORY, PERCEPTUAL, AND PHYSIOLOGICAL ASPECTS OF 

SENSORY DEPRIVATION' 

by 

Sidney Weinstein 

Albert E ins te in  College of Medicine 

Sensory deprivat ion,  the  t o p i c  which I am going t o  speak about today, 

is unusual from severa l  points  of view. I n  sensory psychology and physiology 

we are usual ly  concerned with t h e  e f f e c t  of a stimulus upon t h e  organism o r  

upon a given system of t h e  organism. Sensory deprivation, i n  general ,  i s  

concerned with the  exact opposite: t h e  e f f e c t  of t o t a l  or p a r t i a l  depri- 

vat ion of s t imulat ion upon t h e  organism. 

Although t h e  f i e l d  of sensory deprivation is comparatively new from t h e  

viewpoint of s c i e n t i f i c  psychology, we have been continually made aware by 

laymen of t h e  e f f e c t s  of depriving an individual  of s t imulat ion.  Even 

f i c t i o n a l  accounts of t h e  l as t  century have included references t o  t h e  e f f e c t s  

of var ious forms of i s o l a t i o n  upon t h e  individual .  We a l l  r e c a l l  Ben Gunn 

of "Treasure Is land,"  a vict im of  s o c i a l  i s o l a t i o n ,  and D r .  Manet of "A Tale 

of Two Ci t ies . "  Descriptions of t h e  e f f e c t s  on men placed i n  i s o l a t i o n  i n  

pr ison are f a i r l y  common. Reports of shipwrecked s a i l o r s ,  l o s t  explorers ,  

and pr i soners  of w a r  have a l so  given evidence of t h e  b izar re  react ions of 

lThe preparat ion of  t h i s  repor t  and t h e  author 's  program of research de- 
sc r ibed  as supported through Grant N s G  489 from NASA. 
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individuals  who were i n  i so la t ion .  A d m i r a l  Byrd wrote of t h e  severe de- 

pression and of the  dis turbing thoughts t h a t  plagued him a f t e r  being alone 

f o r  th ree  months in  t h e  Antarctic. ( 9 )  D r .  M a i n  Bombard a l s o  described 

depression and i n a b i l i t y  t o  discern t r u t h  from f a l s i t y  i n  h i s  descr ipt ion 

of h i s  experiences alone on a l i f e  raft i n  t h e  At lan t ic  f o r  two months. 

Chris t ine Ri t ter  a l s o  reported uncontrollable hal lucinat ions and delusions 

i n  discussing t h e  e f f e c t  of her s o l i t a r y  l i f e  i n  the  Arct ic .  

( 7 )  

( 4 0 )  

Similar  mental and perceptual abnormalities have been frequent ly  re- 

ported by individuals  who have experienced periods of i s o l a t i o n ,  including 

pr isoners  of w a r  who were "brainwashed" ( a  procedure based mainly on i s o l a t i o n )  

in  pr isons of t h e  Russian and Chinese Canmunists. ( 2 8 )  

changing s t imulat ion a r e  a l so  wel l  known t o  road engineers who use t h e  t e r n  

"road hypnosis" t o  describe such e f f e c t s  of unchanging v isua l  s t imulat ion 

and r e l a t i v e  motionlessness. Graybiel a l s o  has described t h e  e f f e c t s  of 

m e  e f f e c t s  of un- 

such unchanging v i s t a s  i n  p i l o t s  f ly ing  a t  a l t i t u d e s  over 40,000 f e e t .  H e  

spoke of sudden banking of the a i r c r a f t  f o r  no reason t h a t  t h e  p i l o t  could 

explain,  and other  unusual behavior.'") 

Despite these various accounts of the e f f e c t s  of lowering the  absolute  

l e v e l  of s t imulat ion on the  individual ,  no ser ious attempts were made t o  

study the  phenomenon until the work of Bexton, Heron, S c o t t ,  and Dome 

working with Hebb at McGill University. (6' 2 6 )  

t e res ted  i n  the  e f f e c t s  of decreased var ia t ion  i n  t h e  sensory environment 

on s u g g e s t i b i l i t y ,  o r  as it has popularly been ca l led ,  "brainwashing" a 

procedure i n i t i a t e d  by t h e  Communists. These inves t iga tors  reduced the  

These inves t iga tors  were in- 

'Parenthetic numbers r e f e r  t o  s tud ies  l i s t e d  i n  reference sect ion.  
These references a re  representat ive ra ther  than exhaustive. 
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pat te r ing  of s t imulat ion ra ther  than i t s  absolute  in tens i ty ,  and determined 

the  effect iveness  of such a procedure on increasing the  s u s c e p t i b i l i t y  of 

graduate s tudents  t o  Conmunist propaganda. They found not only an increase 

i n  s u g g e s t i b i l i t y  t o  propaganda, but  a l s o  t h a t  many of  the subjec ts  refused 

t o  remain i n  i s o l a t i o n ,  i n  s p i t e  of t h e  f a c t  t h a t  they were kept  r e l a t i v e l y  

comfortable, were fed ,  and were well paid. 

t o  f i n d  t h a t  25 of 29 subjec ts  reported hal lucinatory experiences, which pro- 

gressed usual ly  from simple sensat ions t o  more highly organized ha l luc ina t ions  

and which occurred anywhere from 20 minutes a f t e r  t h e  s t a r t  of i s o l a t i o n  t o  

70 hours l a t e r .  

The experimenters were surpr i sed  

Le t  us now consider some of  the  e f f e c t s  of sensory deprivat ion and t h e i r  

implicat ions f o r  space t r a v e l .  

deprivat ion is  t h a t  of s p a t i a l  d i sor ien ta t ion .  In the  McCill s t u d i e s ,  when 

t h e  subjec ts  were permitted t o  leave t h e  cubicles  t o  go t o  t h e  bathroom, i n  

s p i t e  of t h e  f a c t  t h a t  they had been there  severa l  times previously,  many of 

them were unable t o  f ind  t h e i r  w a y .  

under t h e  guidance of an individual  as t ronaut .  Another e f f e c t  f requent ly  

mentioned is change i n  t h e  "autokinet ic  effect ."  

a subject ive iapression of movement of a s m a l l  l i g h t  i n  an otherwise dark 

room. 

t h a t  it i s  ac tua l ly  s ta t ionary .  After  deprivat ion,  enhancement of t h e  r a t e  of 

movement of s ta t ionary  points  of l i g h t ,  has been reported. "59 2 6 )  

i n  space who guided himself by t h e  cons te l la t ions ,  might tend t o  bel ieve h i s  

course was changing i f  such points  of l i g h t ,  t h a t  i s ,  the stars, appeared t o  

change t h e i r  pos i t ions .  Other changes commonly noted are  those of s i z e  con- 

stancy.(''' 15' 17' 38' 57)  Size  constancy i s  t h e  term given t o  t h e  f a c t  

t h a t  we tend t o  perceive objects  of known s i z e  as constant, desp i te  t h e  f a c t  

One of t h e  common ef fec ts  reported after sensory 

The implications are c l e a r  f o r  a capsule 

The autokinet ic  e f f e c t  is 

Usually such a l i g h t  i s  reported t o  be i n  motion in  s p i t e  of t h e  f a c t  

A t r a v e l l e r  
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t h a t  our dis tance from them, and hence t h e i r  r e t i n a l  angle ,  changes, e tc .  

Landing or docking a c t i v i t i e s  would be severely handicapped i f  s i z e  con- 

stancy were impaired i n  an astronaut maneuvering h i s  capsule. Without 

laboring t h e  p o i n t ,  it i s  apparent t h a t  such ef fec ts  a s  we have noted, as  

w e l l  as ha l luc ina t ions ,  motion a f te r -e f fec ts ,  increased s u s c e p t i b i l i t y  t o  

i l l u s i o n s ,  d i s t o r t e d  time estimations, impaired judgment of three-dimen- 

s iona l  forms, e t c .  may have extremely dangerous consequences f o r  an astronaut  

whose judgment and reac t ion  time m u s t  remain a t  the highest l eve ls .  

Research i n  sensory deprivation has increased rapidly i n  the past  years  

and with such increase i n  the number of s tudies  has come a grea t  d e a l  of 

confusion of terms because of divergent usage. I w i l l  therefore  def ine 

some of t h e  more frequently used terms and describe some of t h e  usual tech- 

niques employed. Deprivation is  a very general  term and has been used t o  

r e f e r  t o  a reduction of t h e  sensory s t imulat ion impinging upon an individual .  

Thus, "sensory deprivation" i s  t h e  term general ly  employed i n  t h i s  area.' 3 0 )  

The deprivat ion may be t o t a l  o r  p a r t i a l .  That i s ,  t h e r e  may be some lowering, 

or a t o t a l  e l iminat ion of t h e  leve l  f o r  example, of i l luminat ion.  

ceptual  deprivation" has been employed t o  r e f e r  t o  t h e  el iminat ion of t h e  

subjec t ' s  a b i l i t y  t o  perceive objects . (30)  

perceptual ly  deprived, he usually wears f ros ted  goggles which permit d i f fuse  

i l luminat ion t o  s t imulate  him, but  which el iminate  his a b i l i t y  t o  perceive 

shapes. The term "isolat ion" h a s  usual ly  been employed i n  deal ing wit.h a 

s o c i a l  s i t u a t i o n ,  t h a t  i s ,  re la t ions  with o ther  ind iv idua ls ,  and i s  of ten  

re fer red  t o  as "soc ia l  isolat ion."  I n  such a s i t u a t i o n  it i s  t h e  soc ia l  

nature  of t h e  deprivat ion which is. s t r e s s e d ,  although here too ,  it may be 

combined with sensory deprivation. 

r e s t r i c t e d  t o  one or  two modalities, or he complete. 

"Per- 

Thus, t o  have a subject  visual ly-  

F ina l ly ,  t h e  sensory deprivation may be 

Thus, i n  some s tudies  
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the  deprivation was r e s t r i c t e d  only t o  v i s ion ,  or  only t o  k ines thes is ,  t h a t  

i s ,  depriving t h e  individual  of feedback concerning h is  own bodi ly  movements. 

With regard t o  t h e  nany techriiques employed in  deprivation s t u d i e s ,  

these have var ied as of ten as  new inves t iga tors  have entered the  f i e l d .  

Among the  procedures employed are  t h e  use of small soundproof cubicles ,  o r  

small rooms containing a cot o r  mat t ress . (6’  ’79 37’ k2’ 443 5 5 )  

researchers have employed coff in- l ike devices t o  hold the s u b j e c t ,  (56,  6 0 )  

while others  have employed resp i ra tors  such as those used i n  t r e a t i n g  pa t ien ts  

with poliomyelitis.(14’ 3 2 y  36’ 62) 

nique which submerges t h e  subjec t  under water ,  permitting him t o  breathe 

through a tube.(31’ 41) 

lessness  f o r  t h e  subjec t .  I n  providing v isua l  deprivation, the  techniques 

have ranged from darkening t h e  room t o  having t h e  subject wear opaque goggles, 

(4) 

auditory deprivat ion,  r e l a t i v e l y  soundproof cubic les ,  with sound at tenuat ion 

t o  70 o r  100 db, (431 have been employed. 

ioners  which produced a source of white noise which masks any unwanted sounds 

were used. (26) 

el iminate  sound and t o  provide means by which the  experimeter could communi- 

cate  with t h e  subjec t  or  t o  t ransmit  white noise . (46)  

t h e  body sur face  has proved t o  be more d i f f i c u l t ,  s ince t h e  subject  must l i e  

upon some port ion of h i s  anatomy. However, some researchers have employed 

la rge  cardboard tubes over the  hands,(14) o r  large mittens padded with fur .  

(”) 

Some 

The most ingenious departure i s  a tech- 

Such a procedure a l so  provides a degree of weight- 

or  f ros ted  goggles(54)  i n  the case of perceptual  deprivation. For 

In  some experiments, air  condit- 

Occasionally, earphones have been worn by subjec ts  both t o  

Tactual i s o l a t i o n  of  

In some of t h e  p a r t i a l  deprivation s t u d i e s ,  the  hands have been placed 

i n  containers  resenbl ing c igar  boxes which keep t h e  fingers r e l a t i v e l y  

I n  other s t u d i e s  rods (27)  i s o l a t e d  f r o 3  objects  and from one another. 

o r  c u p s ( l ’  2 y  3, have been at tached t o  t h e  surface of the arms and covered 

(‘8) 
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over by adhesive t a p e ,  which keeps t h e  forearm r e l a t i v e l y  i s o l a t e d  from 

st imulat ion.  

The times of  s t imulat ion a l s o  have been q u i t e  var ied.  In some s tudies  

i s o l a t i o n  occurred f o r  only 30 ~ n . i n u t e s ( ~ ~ )  i n  others  f o r  a few hours, (42) 

i n  t h e  usual  ones for one or days and f o r  t h e  highly ambitious ones 

seven t o  fourteen days. (59)  During these  periods of deprivat ion some exper- 

imenters permit ted t h e  subject  t o  take food or t o i l e t  breaks,  whereas others  

permitted ad l ib i tum feeding and a c c e s s i b i l i t y  t o  t o i l e t s .  

subjec ts  employed were a l s o  varied. Although most s tud ies  eQployed col lege 

or  graduate s tudents  ,(58) others  u t i l i z e d  unemployed ac tors  ,(20) and some 

even t e s t e d  psychotic pa t ien ts .  

The types of 

( 3 8 )  

Among t h e  more c r i t i c a l  var iables  employed, was t h a t  of varying t h e  form 

of ins t ruc t ions  or suggestions t o  t h e  subject .  In some experiments no in- 

s t ruc t ions  of any kind were given t o  t h e  subject ;  in others  t h e  ser ious  nature  

of t h e  experiment and i ts  importance were emphasized. 

One o ther  independent var iable  worthy of  note employed w a s  species  

differences.  Although most of t h e  s tud ies  have been done on man, o ther  

s tud ies  have employed ducks, r a t s ,  c a t s ,  monkeys, o r  chimpanzees.(16’20y34 9 3 9 )  

In t h e  approximately 100 s tudies  which have been surveyed t o  d a t e ,  t h e r e  

have been some 35 t o  40 dependent var iables  s tud ied .  These have consis ted 

of various measures of t h e  sensory changes within v is ion ,  audi t ion ,  and 

somesthesis. Other var iab les  have becn concerned with physiological  measures 

such as hear t  r a t e ,  body temperature, phospholipid metabolism, catechol  amine 

excret ion,  electroencephalography, galvanic sk in  r e f l e x ,  measures of bodily 

a c t i v i t y ,  motor performance, cognitive functioning, and learning a b i l i t y .  

Some s tudies  have been concerned with such extremely abnormal behavior as 

ha l luc ina t ions ,  o r  delusions,  confused thought, e t c .  ; however, we w i l l  not 

concern OurSelveS with t h e s e  phenomena today. 
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Let us now consider some of the  e f f e c t s  produced by sensory deprivat ion,  

Let us r e s t r i c t i n g  our observations t o  only a few of the  var iables  measured. 

f i rs t  consider t h e  v isua l  constancies. Visual constancy has been defined as 

t h e  a b i l i t y  of an individual  t o  continue t o  ident i fy  a known object  e .g . ,  

according t o  i t s  s i z e ,  i t s  shape, i t s  co lor ,  o r  i t s  br ightness ,  i n  s p i t e  

of t h e  f a c t  t h a t  there  a r e  var ia t ions  i n  t h e  dis tance,  the  v i s u a l  angle ,  and 

t h e  i l luminat ion under which t h e  object  i s  perceived. Thus, with regard t o  

s i z e  constancy, even though an automobile and a lump of sugar may occury the  

same area  on t h e  r e t i n a ,  t h a t  i s  t h e  same v isua l  angle ,  the automobile i s  

seen as much l a r g e r  than t h e  lump of sugar. The tendency t o  judge an object  

according t o  i t s  r e t i n a l  angle o r  i t s  t r u e  s i z e  can be measured ra ther  

accurately.  I n  10  s tud ies  which have considered s i z e  constancy, 5 were able 

t o  demonstrate an impairment after a deprivation period which l a s t e d  from 

only 4 hours t o  as  much as 1 4  days.‘”’ 15’ 17’ 38y 57) 

formed by t h e  group a t  McCill Universi ty ,  deprivation las t ing  from 24 t o  96 

hours w a s  s u f f i c i e n t  t o  produce an impairment of shape constancy. 

In two s tudies  per- 

( 1 5 ,  26) 

I n t e r e s t i n g l y  enough, i n  one of these s tud ies  v isua l  acuity was found t o  in- 

crease s i g n i f i c a n t l y .  (I5) I n  two o ther  s tud ies  color  discrimination was 

s tudied ,  t h a t  i s ,  t h e  subjec t ’ s  a b i l i t y  t o  d i f f e r e n t i a t e  hues. (56 ,  60) In 

both s tudies  t h i s  a b i l i t y  was impaired a f t e r  deprivation of movement last- 

ing from 3 hours t o  7 days. Several  s tud ies  have a l s o  deal t  with t h e  

e f f e c t s  of deprivat ion upon form perception. With l i t t l e  exception, t h e  

s u b j e c t s ,  who were deprived from as l i t t l e  as 3 hours up t o  1 4  days, m i s -  

perceived v i s u a l  forms presented. 

d i s t o r t e d ,  s t r a i g h t  edges tended t o  appear curved, a t  the region of f ixa t ion  

f l a t  surfaces  appeared t o  bulge toward t h e  subjec t ,  and even simple geometric 

pa t te rns  were misperceived. (I7’ 2 6 y  56) 

revealed somewhat more ambiguous r e s u l t s .  I n  three  s tud ies ,  

They perceived t h e  shapes of objects  as 

Studies  of t h e  autokinet ic  e f f e c t  

(37, 46, 53) the 
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degree of perceived movement diminished, and i n  two o ther  s tud ies  t h e  degree 

of subjec t ive ly  perceived movement increased. (’53 26) 

fac tors  contr ibuted t o  t h e  increase o r  decrease of t h e  subject ive movement of 

t h e  point  of l i g h t  presented. In two s tudies  concerned with estimation of t h e  

speed of motion, subjec ts  tended t o  underestimate t h e  r a t e  o f  motion of 

moving objec ts  . 

It is unclear  what 

(18, 37) 

In te res t ing ly  enough, t h e  modality t e s t e d  a l s o  seems t o  be important 

with regard t o  whether there  w a s  improvement o r  impairment. Thus,  whereas 

most of t h e  s tud ies  Df vis ion showed an impairment, most of t h e  s tud ies  of  

t a c t u a l  s e n s i t i v i t y  show t h e  opposite. I n  measuring two-point discr iminat ion 

thresholds ,  that i s ,  t h e  a b i l i t y  of subjects  t o  d i f f e r e n t i a t e  two points  

simultaneously appl ied t o  the sk in  from a s i n g l e  poin t ,  wi th  varying dis tances  

between t h e  poin ts ,  f i v e  s tudies  showed t h a t  deprivation produced an en- 

hancement of t h i s  a b i l i t y .  (3’  15’ 27’ 37’ ‘” That i s ,  t h e  subjec ts  were 

able  t o  discr iminate  two points from one when t h e  two poin ts  were appl ied 

at much smaller  dis tances  between them than they  could before  deprivation. 

The same e f f e c t s  were obtained i n  t e s t s  of t a c t u a l  fusion.‘” 2’ 31 5 3 )  

these measures t h e  subjec t ’ s  a b i l i t y  t o  resolve t h e  individual  s t imul i  of  

an in te r rupted  je ts t ream of  a i r  appl ied t o  t h e  sk in  improved a f t e r  deprivat-  

ion l a s t i n g  up t o  seven days. 

In 

Varying r e s u l t s  have been reported f o r  example, i n  t h e  auditory modality, 

t h e  da ta  bear ing no apparent re la t ionship  t o  differences i n  t h e  independent 

var iab les  employed.(19’ 35y 57) 

of t h e  hear t  ra te . (5’  13’ ’‘’ 33’ 

Simi lar  s ta tements  could be made f o r  s tud ies  

With regard t o  chemical s tud ies  of t h e  e f f e c t s  of deprivat ion,  phospho- 

l i p i d  turnover  was found t o  decrease i n  mice a f t e r  14 t o  31 days of i s o l a t i o n .  

( 4 7 )  Catechol amine excret ion w a s  increased a f t e r  36 hours of deprivat ion i n  
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a tank type  resp i ra tor .  (321 Among the  more consis tent  of t h e  p b s i o l o g i c a l  

changes i s  that of the  electroencephalogram. I n  nine s tudies  ~ i c h  measur- 

ed t h e  spontaneous e l e c t r i c a l  a c t i v i t y  of t h e  bra in ,  a l l  showed changes as 

a function of sensory d e p r i ~ a t i o n . ' ~ '  12* 26y 4 2 9  52' 54y58' 5 9 )  

t h e  frequencies i n  t h e  alpha band, t h a t  i s  i n  t h e  8 t o  1 2  cycles  per  second 

range, tended t o  be slower a f t e r  deprivation than before it. I n  s tudies  

deal ing with t h e  galvanic skin re f lex ,  a measure of s k i n  conduct ivi ty ,  all 

showed changes t o  s t imulat ion a f t e r  per iods of deprivation l a s t i n g  from 2 t o  

3 hours. 

In  general ,  

(12, 42, 61, 6 3 )  

Other s tud ies  have been concerned with the  e f f e c t s  of various drugs  

during t h e  deprivat ional  s t a t e  and have measured cognitive o r  motor perform- 

ance as wel l  a s  learning a b i l i t y .  

How can these data  a l l  be summarized simply. The answer i s ,  unfortunately,  

t h a t  they cannot. However, it is  s a f e  t o  s a y  t h a t  t h e  e f fec ts  of deprivation 

are r a t h e r  pervasive and q u i t e  apparent. 

t h e r e  i s  no question t h a t  an individual  who has been deprived of sensat ion i s  

a changed individual .  H i s  judgment s u f f e r s ,  he i s  s p a t i a l l y  and temporally 

d isor ien ted ,  h i s  a b i l i t y  t o  perceive things v isua l ly ,  audi tor i ly ,  and t a c t u a l l y ,  

i s  changed. 

a danger t o  himself and t o  others  dependent upon him i f  any respons ib i l i ty  

such as t h a t  of guiding a space c r a f t ,  were placed i n  h is  hands. 

Regardless of the  type  of study,  

I n  general ,  he i s  s u f f i c i e n t l y  a l t e r e d  so that  he would become 

Research i n  t h i s  area, i f  it is  t o  have any p r a c t i c a l  s ign i f icance  f o r  

space t r a v e l ,  must therefore  answer three  r a t h e r  broad questions: 1. What 

a r e  t h e  a b i l i t i e s  re levant  t o  space f l i g h t  which a re  impaired a f t e r  r e s t r i c t -  

ion of motion and r e l a t i v e l y  unchanging s t imulat ion such as would occvz i n  

long f l i g h t s  i n  a capsule? 2. h a t  a re  t h e  charac te r i s t ics  of individuals  

which makes them r e l a t i v e l y  l e s s  suscept ib le  t o  t h e  e f fec ts  of  such r e s t r i c t i o n s  
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of  motor a c t i v i t y  and sensory stimulation, and 3. 

of s t imulat ion is required t o  o f f se t  t he  e f f e c t s  of such motor and sensory 

deprivation? Such research must f i r s t  start t o  c l a r i f y  some of t h e  un- 

answered problems posed by the ambiguous results of previous research. Hav- 

ing  ascer ta ined t h e  primary e f f ec t s  r e su l t i ng  from sensory deprivation, we 

must s e l e c t  those individuals  uho are minimally impaired by deprivation, 

and compare t h e i r  cha rac t e r i s t i c s  with those of individuals who show maximal 

impairment. F ina l ly ,  we must t i t r a t e  t he  st imulation which is  necessary t o  

i n h i b i t  t h e  deleter ious e f f ec t s  of  deprivation. This program, as out l ined,  

i s  an ambitious one. I n  my laboratory a t  t he  Albert Einstein College of  

Medicine, we  have i n i t i a t e d  such a program of research with the  support of 

NASA. 

what manner and in t ens i ty  

Before ou t l in ing  t h e  program of research which we have i n i t i a t e d ,  it 

might be wel l  t o  consider the categories  of  sensory change which an astronaut 

might undergo i n  h i s  capsule,  o r  an experimental subject  i n  his cubicle.  The 

first deals with t h e  energy level  of t he  st imulus delivered t o  t h e  receptor  

system. Too much o r  too l i t t l e  energy would result i n  a complete loss of 

information t o  the  sub jec t .  For example, i f  t he  energy of a l i g h t  source is 

below the  sub jec t ' s  threshold he would not see it. I f  t h e  energy l e v e l ,  con- 

versely,  were too high, t he  glare  vould "wash out" t h e  perceptual q u a l i t i e s  

of t h e  s t imulus,  and although the  subject would be aware of  t h e  existence of 

t he  st imulus,  he could not ident i fy  it. 

energy l e v e l  and t h e  sub jec t ' s  performance i s  a cu rv i l i nea r  r a t h e r  than a 

monotonic function. The second aspect worthy of consideration is t h a t  of t h e  

pat terned o r  unpatterned nature of t h e  st imulus.  

versus pat terned sounds, "snow" such as appears on a T.V. screen, versus some 

d i s c r e t e  v i s u a l  s t i m u l i ,  o r  wind blowing against  t h e  skin,  i n  contrast  t o  a 

spec i f i c  touch. This var iable  is independent of t h e  energy l e v e l  mentioned 

Thus, t he  r e l a t ionsh ip  between the  

Here, examples are v h i t e  noise 
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above. It i s  concerned only with the degree of information t ransmit ted.  

A t h i r d  category which is relevant here,  is t h a t  of t he  frequency, of change. 

Here we a re  concerned, not with energy, o r  meaningfulness, but  r a t h e r  with 

the  frequency with which one stimulus i s  changed from another. Thus, one 

might have a stimulus of medium energy, and moderate pat terning,  which is 

changed f o r  a d i f f e ren t  stimulus of similar or  diss imilar  c h a r a c t e r i s t i c s  

and which is changed r e l a t i v e l y  infrequent ly ,  o r  not changed. We a re  now 

aware t h a t  some higher centers of t he  brain may block such unchanging 

s t i m u l i  from reception by t h e  organism. 

found even i n  lower organisms i n  which a tone of a given frequency f a i l s  t o  

evoke a c o r t i c a l  response after much r epe t i t i on ;  however, a tone of a d i f f -  

e r en t  frequency at  t h i s  t i m e  w i l l  cause t h e  c o r t i c a l  response t o  return.  

Thus, t h e  aspect of change of t he  stimulus i s  a c r i t i c a l  one i f  one i s  con- 

cerned with maintaining t h e  vigi lance of t he  subject .  

of consideration is t h a t  of t he  "rearrangement" of s t i m u l i .  

within any of t he  above categories  may be delivered t o  the organism i n  such 

a manner as t o  change t h e i r  i n t r i n s i c  meaning. 

system m a y  be so a l t e r e d  by circumstances that it misperceives stimuli; or 

t h e  t r ansmi t t e r  which del ivers  t h e  stimuli may d i s t o r t  i t  before  it a r r ives  

at the  receptor .  

maladaptive nature  of responses of an individual  who has been subjected t o  

d i s t o r t i o n  of  h i s  perceptual surroundings, by means of la teral ly-displacing 

o p t i c a l  prisms. I s h a l l  r e tu rn  t o  these s tud ie s  and some of the results we 

have obtained, i n  B moment. 

Such habituation has been frequently 

A f i n a l  aspect worthy 

That i s ,  s t imu l i  

For example, a receptor  

We have engaged i n  s tudies  demonstrating t h e  subsequent 

Before w e  can understand adequately t h e  e f f e c t s  of various forms of 

sensory deprivat ion upon t h e  ind iv idua l ,  it is  c l e a r  t h a t  w e  m u s t  f i r s t  under- 

Stand whether t h e  energy l e v e l  has been e f f ec t ed ,  what the l e v e l  of pat terning 
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i s ,  t h e  frequency of change of t h e  s t i m u l i ,  and whether or not t h e  environment 

has been "rearranged." 

I n  addi t ion t o  in te rpre t ing  the stimulus s i t u a t i o n  impinging on t h e  sub- 

j e c t ,  we must a l so  i n t e r p r e t  a t  what l e v e l  t h e  e f f e c t  i s  ac t ing  upon t h e  sub- 

j e c t .  

response i n  a subjec t ,  as an example of the l e v e l  of e f f e c t .  

Let me give some reasons t h a t  a visual  stimulus may not produce a 

I f  we were faced with in te rpre t ing  the cause of an ind iv idua l ' s  in- 

a b i l i t y  t o  repor t  t h e  presence of a complex visual  stimulus, a number of 

hypotheses would suggest themselves. 

a loss of t h e  stimulus within the  individual ' s  short-term memory s torage ,  

such t h a t  he no longer had a memory s u f f i c i e n t l y  i n t a c t  t o  permit him t o  re- 

spond. 

highly complex neural disorder. 

of d i f f i c u l t y  would be t h a t  h i s  e f f e c t o r  mechanism, t h a t  i s ,  h i s  a b i l i t y  t o  

respond, may be impaired. Although these two "complex" a l t e r n a t i v e s  a r e  with- 

i n  t h e  realm of  p o s s i b i l i t y ,  onc s h o u l d  always seek a lower l e v e l  a l te rna t ive .  

The following simpler p o s s i b i l i t i e s  may a l s o  account f o r  t h e  i n a b i l i t y  of an 

nndividual t o  respond t o  a visual  stimulus. The f i r s t ,  and s implest ,  possibi-  

l i t y  i s  t h a t  of a clouding of t h e  lens  or  cornea. The second p o s s i b i l i t y ,  

involving a more complex mecahanicm, concerns the  i n a b i l i t y  of the  individual  

t o  focus upon the stimulus. A t h i r d ,  increasingly complex p o s s i b l i t y ,  is t h a t  

t h e  r e t i n a ,  a b i t  of nervous t i s s u e ,  has become r e f r a c t o q  because of too  in- 

tense ,  o r  t o o  prolonged a period of p r i o r  s t imulat ion.  Fourthly. one might 

speculate  t h a t  the  opt ic  nerve, a s t ruc ture  concerned with the  transmission 

of t h e  information from t h e  receptor mechanism t o  more c e n t r a l  mechanisms, i s  

malfunctioning. A f i f t h  a l te rna t ive  worthy of considerat ion i s  t h a t  a l l  pre- 

ceding mechanisms a r e  adequately functioning, but t h a t  t h e  i n i t i a l  cerebra l  

relay center ,  the  l a t e r a l  geniculate body of t h e  thalamus, i s  malfunctioning. 

Thus, one might i n f e r  that there  w a s  

However, t h i s  in te rpre ta t ion  would be at  the  l e v e l  of i n f e r r i n g  a 

Another a l t e r n a t i v e ,  a l s o  at  a "higher level"  
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adequately functioning, hu t  that the  i n i t i a l  cerebra l  relay center ,  the  

l a t e r a l  geniculate  body of the  thalamus, i s  malfunctioning. A scxth alter- 

nat ive is t h a t  t h e  o p t i c  radiat ions t o  t h e  o c c i p i t a l  cortex, a r e  impaired; 

a seventh, t h a t  t h e  project ion cortex of the  bra in  i t s e l f  i s  involved; an 

eighth t h a t  t h e  in te rac t ion  with modalities and ef fec tor  mechanisms i s  

inoperat ive ; and f i n a l l y ,  t h e  a l te rna t ives  o r i g i n a l l y  given, namely t h a t  

the  short-term memory of e f f e c t o r  mechanisms themselves were not operating. 

It is our in ten t ion  t o  determine the  lowest l e v e l s  of impairment which 

may be responsible  f o r  t h e  d e f i c i t s  obtained i n  sensory deprivat ion.  We 

bel ieve t h a t  it is inappropriate  t o  ascr ibe impairment t o  higher  order  l e v e l s  

of mzlfunctioning. One simple analogy may make much of t h e  foregoing c lear .  

We bel ieve it is  more appropriate  from t h e  point  of view of imparting infor-  

mation, t o  state t h a t  a man's o c c i p i t a l  cor tex does not respond t o  l i g h t  

f lashes ,  than t o  say he i s  incapable of c e l e s t i a l  navigation from astral 

char t s .  Although t h e  l a t t e r  statement i s  a lso t r u e ,  it m a y  imply t h e  exist- 

ence of o ther  a b i l i t i e s  and could not enable us t o  predict his f a i l i n g s  by 

i t s  lack of exc lus iv i ty .  It is f o r  such reasons t h a t  we seek what might be 

ca l led  t h e  lowest common denominator of human functioning when we seek t h e  

e f f e c t s  of sensory deprivation upon loss of a b i l i t i e s .  

I s h a l l  now out l ine  t o  you very b r i e f l y  our program of research. F i r s t l y ,  

we plan t o  p lace  individuals  under conditions which would provide deprivat- 

ion i n  any one o r  all th ree  of t h e  major modal i t ies ,  or under any c a b i n a t i o n  

of two of them. We plan t o  i s o l a t e  then  f o r  from one t o  t h r e e  days. As one 

cont ro l  group, we w i l l  test individuals  before and a f t e r  one, two, o r  th ree  

days, who will spend t h e  inter im period engaged in t h e i r  normal a c t i v i t i e s .  

Another c o n t r o l  group w i l l  comprise individuals  who w i l l  have no sensory 

deprivat ion,  bu t  w i l l  have r e s t r i c t i o n  of motor ac t iv i ty .  Similar groups of 
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subjec ts  w i l l  have only a loss of pat terned s t imulat ion.  

being placed e n t i r e l y  i n  t h e  dark, they w i l l  wear f rosted goggles which w i l l  

provide continuous, d i f fuse  s t imulat ion,  and earphones which w i l l  provide 

continuous white noise. The dependent var iables  s tudied w i l l  provide 

measures of absolute s e n s i t i v i t y  f o r  v i s ion ,  audi t ion,  and s m e s t h e s i s .  

That i s ,  we will measure brightness thresholds ,  loudness thresholds ,  and 

touch s e n s i t i v i t y  thresholds .  We w i l l  a l s o  determine discrimination thres -  

hold i n  each of t h e  modalities: 

discriminations. Various other more complex a b i l i t i e s  w i l l  be s tudied.  We 

a lso  plan t o  measure three-dimensional s p a t i a l  o r ien ta t ion  by having t h e  

individual  navigate i n  three-dimensional space, u t i l i z i n g  v i s u a l ,  audi tory,  

t a c t u a l ,  o r  combinations of t h e s e  cues t o  guide him. We have already begun 

t o  measure t h e  e f f e c t s  of i n t r i n s i c  and e x t r i n s i c  guidance upon t h e  ind i -  

v idua l ' s  a b i l i t y  t o  l e a r n  t o  respond t o  a "rearranged" environment, t h a t  i s ,  

an environment whose s p a t i a l  coordinates a r e  d is tor ted  by l a t e r a l l y - d i s p l a c i n g  

prisms. 

That i s ,  ins tead  of 

f o r  example, tone ,  co lor ,  and two-point 

Emotional responses will a l s o  be measured by means of t h e  galvanic skin 

r e f l e x ,  and by means of pupillography. Recent reports  have demonstrated 

t h a t  t h e  pupi l  d i l a t e s  rapidly and cons is ten t ly  t o  emotion-provoking s t imul i .  

By monitoring t h e  changes in  pupi l lary diameter, by means of ambient in f ra red ,  

t o  v isua l  s t imulat ion of an emotional nature ,  we plan t o  determine what 

e f f e c t s  deprivation has upon the  emotional responses of individuals  a f t e r  

deprivation. F ina l ly ,  we are  planning t o  study various physiological  and 

neurophysiological e f f e c t s  of deprivation. Thus, we plan t o  determine t h e  

spec t ra l  changes i n  frequency of the  EEG. Perhaps of even g r e a t e r  value is  

the  study of t h e  c o r t i c a l  evoked poten t ia l .  This e l e c t r i c a l  response of t h e  

hrain is  time-locked t o  various s t imul i  uhich a r e  presented t o  the  sensory 
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receptors.  

it is  possible  t o  in t eg ra t e  the  e l e c t r i c a l  a c t i v i t y  of  the b ra in  so as t o  

increase the signal-to-noise of  a spec i f i c  time-locked r s p o n s e  t o  a 

stimulus, over t h a t  of t he  spontaneous e l e c t r i c a l  a c t i v i t y  of  t he  brain.  

The importance of such measures i s  apparent when one considers t h a t  t he  

ascending r e t i c u l a r  ac t iva t ing  system of t h e  b ra in  has been implicated by 

many authors as playing an important r o l e  i n  producing the e f f e c t s  of  

sensory deprivation. The diffuse nature of t h i s  system, with i t s  r o l e  i n  

a t t en t ion ,  a l e r t i n g ,  and the  control  over sleep-wakefulness, makes such a 

mechanism a very l i k e l y  one t o  be implicated i n  the e f f ec t s  of  deprivation. 

I n  addition t o  the  neurophysiological mechanisms s tudied,  hea r t  rate, 

general  bodi ly  movement, and breathing rates w i l l  be determined after 

varying periods of deprivation. 

By using a spec ia l  computer, t h e  Computer of Average Transients ,  

I have r e fe r r ed  t o  rearrangement several  times. Although it it not 

among t h e  techniques usual ly  considered when one deals with sensory de- 

p r iva t ion ,  I bel ieve t h e  c e n t r a l  mechanisms involved may be t h e  same, 

and t h a t  it i s  merely another method t o  consider which produces a modi- 

f i c a t i o n  of t h e  usual  sensory environment of the  individual. Among t h e  

techniques commonly employed t o  rearrange t h e  environment are the  use of 

microphones, each leading t o  one e a r ,  with posi t ions var iable  such Ghat 

t he  ax i s  connecting them m a y  be O', go', o r  a t  180' with regard t o  the  

axis  of t h e  ears. Another technique employs l a t e ra l ly -d i sp lac ing ,  or  

i nve r t ing ,  prisms, o r  lenses  of various hues. 

It i s  probable t h a t  t he  cen t r a l  mechanisms concerned with an indi-  

v idua l ' s  adaptat ion t o  diminished or excessive st imulation are the  same as 

those involved i n  dealing with an environment which has been so modified, 

o r  rearranged. 
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The r e t i c u l a r  ac t iva t ing  system of the  bra in  has been implicated i n  

reducing our vigi lance t o  s t imuli ,  which have been shown t o  be without 

s ign i f icance  t o  us. It might similarly serve i n  the  reorganization of 

our responses t o  s t i m u l i  which s imi la r ly  have been found, through exper- 

ience,  no t  t o  conform with previous experience or not t o  bear  the  same 

re la t ionship  t o  our responses t h a t  previous s t imul i  did. 

As p a r t  of our program of research concerned with fac tors  which 

modify t h e  ind iv idua l ' s  capaci t ies  and responses t o  an a l t e r e d  environment, 

we have also embarked on a s e r i e s  of experiments concerned with t h e  re-  

arrangement of the  individual ' s  sensory environment. 

Some data  have already been derived from severa l  preliminary s tudies  

of t h e  e f f e c t s  of rearrangement of t h e  v i s u a l  environment on the  subjec t ' s  

adaptat ion t o  s t imulat ion (49, 50,  51). 

cerned with t h e  e f f e c t s  of rearrangement; t h e  theory of reafference,  

o r i g i n a l l y  proposed by von Holst ,  ( 4 5 ) ,  contends t h a t  one learns  t o  re -  

spond t o  v i s u a l  s t imul i  through reafference ra ther  than exafference. 

The major theory which is con- 

These terms may be distinguished as follows: Exafference r e f e r s  t o  

s t imulat ion of t h e  individual  by sources which a r e  independent of h i s  own 

act ions.  That i s ,  a b u t t e r f l y  moving pas t  one's eyes i s  a source of 

exafference. By cont ras t ,  reafference r e s u l t s  when one i s  t h e  source of  

h i s  -s t imulat ion.  For example, moving about ac t ive ly ,  or waving a hand 

before  one's eyes are sources of reafference.  

According t o  Held, (22 ) ,  one of t h e  major proponents of reafference 

theory,  one cannot adapt t o  a v i s u a l  environment which has been rearranged, 

unless he has been subjected t o  reafference,  t h a t  i s ,  unless he has had 

ac t ive  commerce with t h e  environment. In support of t h i s  s ta tement ,  Held 

and h i s  col laborators  have completed a s e r i e s  of experiments vhich have 
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demonstrated the  necessi ty  f o r  reafference i n  v i s u a l  adaptation, (8,  21,  

22, 24, 2 5 ) .  

A paradigm o f  t h i s  research i s  a study emplojing 20 d iopter  prisms 

which displace t h e  v i s u a l  f i e l d  l a t e r a l l y  ( 2 3 ) .  The experimental group, 

wearing t h e  prisms, walked about a campus f o r  an hour, having f i r s t  been 

t e s t e d  f o r  egocentr ic  loca l iza t ion .  That i s ,  a f t e r  locat ing t h e  angle at 

which they had t o  r o t a t e  themselves i n  a revolving chair  s o  t h a t  they faced 

exact ly  a given p o i n t ,  they had a full hour of  reafferent  experience with 

t h e  prisms. Upon r e t e s t i n g  i n  the  egocentric loca l iza t ion  equipment, it 

was found t h a t  t h e  group had a s i g n i f i c a n t  pos i t ive  a f te r -e f fec t .  That i s ,  

they tended t o  pos i t ion  t h e i r  body i n  t h e  d i rec t ion  opposite t o  t h e  o r i g i n a l  

displacement of the  prisrns. This opposite r o t a t i o n ,  or a f te r -e f fec t ,  i s  

considered evidence f o r  adaptation t o  t h e  prisms. I n  other words, t h e  

subject  adapted t o  the  T r i m s ,  and when they  were removed, h e  then responded 

t o  t h e  l o c a l i z a t i o n  t a s k  as though h i s  normal s t a t e  of  perception involved 

t h e  wearing of prisms. 

The cont ro l  group of subjec ts  a l s o  wore prisms. However, t o  avoid 

reafference,  they s a t  passively i n  wheel c h a i r s ,  and were t ransported by 

another person. The r e s u l t s  demonstrated t h a t  these subjects d id  not adapt. 

The conclusion w a s  t h a t  exafference i s  i n s u f f i c i e n t  t o  y i e l d  adaptation. 

There a r e  severa l  c r i t i c i sms  one can make of t h i s  experiment. For one, 

t h e  v i s u a l  experience of a person walking with concomitant head bobblings, 

e t c . ,  i s  not  equivalent t o  t h a t  of a sea ted  person who is being wheeled. 

The o ther  problem which dis turbed us w a s  t h e  equivalence of vig i lance  or  

motivation of a passively-transported subjec t  with one who must ac t ive ly  

avoid obs tac les ,  s t e p s ,  e t c .  i n  walking about. 
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We decided t o  repeat the experiment, correct ing the  flaws we mentioned. 

For one, i n  our experiment, (491, a l l  subjects ,  ac t ive  and passive,  were 

i n  wheel chairs  t o  eliminate differences i n  v i sua l  st imulation. And, i n  

order t o  study t h e  r e l a t i v e  roles  of self-induced movement and informational- 

feedback, we separated two variables : self-induced movement, and self- 

guidance. 

A subject  could have e i t h e r ,  nei ther ,  or  both of these var iables  

operating. 

Thus, t he  ones who had nei ther  self-produced movement nor self-guidance 

were passively pushed i n  a wheel cha i r ,  while wearing prisms. 

Those who had both self-induced movement and self-guidance pushed, and, 

of course,  guided themselves through the  prescribed course. 

The other  groups had one o r  the other  condition. The self-induced move- 

ment group without self-guidance merely pushed t h e  chair  forward a t  a l l  times 

without s t ee r ing  it. The a s s i s t an t  who accompanied t h e  cha i r  s teered it ,  

and took all re spons ib i l i t y  for  i t s  guidance. 

The f i n a l  group, t h e  self-guidance group, guided t h e  cha i r ,  but did 

not propel it. To insure tha t  he alone would guide it, the  one who pushed 

it w a s  blindfolded and took a l l  i n s t ruc t ions  from the subject  seated i n  t h e  

chair .  

According t o  reafference t h e o r i s t s ,  only those who ac t ive ly  propelled 

the  chairs  should adapt t o  the prisms. The r e s u l t s  shared t h a t  t he  groups 

did not d i f f e r  i n  t h e  degree of pos i t i ve  adaptation. Furthermore a l l  

adapted s ign i f i can t ly  and posi t ively.  

We bel ieve we have demonstrated i n  t h i s  experiment, and i n  s eve ra l  

subsequent ones, t h a t  reafference i s  not necessary t o  achieve v i sua l  

adaptat ion,  but t h a t  informational feedback i s .  To t h e  extent  t h a t  
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reafference has been shown t o  produce v i sua l  af ter-effects  t o  rearrange- 

ment, we bel ieve t h a t  the e f f e c t  may be a t t r i b u t a b l e  t o  the concomitant 

informational feedback which the reafference involved. 

We have continued work i n  this area,  determining the v i s u a l  and extra-  

v i s u a l  e f f e c t s  which 'may cause react ions t o  visual  stimuli. We bel ieve t h a t  

many s i t u a t i o n s  may a f f e c t  an individual ' s  adaptat ional  responses. There i s  

some evidence t o  suggest t h a t  asymmetrical v i sua l  s t imulat ion,  t h a t  is l i g h t  

s t imulat ion from one s i d e ,  may a f f e c t  t h e  individual ' s  judgment of his own 

body midline. 

The implications of these da t a  f o r  an astronaut being asymmetrically 

st imulated,  f o r  example, by sunl ight  coming from the  right p a r t  hole  of h i s  

capsf ie  a re  apparent. 

which involve slight body to r s ion  over a small period of time t o  one s i d e  may 

a l s o  e f f e c t  t h e  individual ' s  judgment of direct ion.  

We a l s o  have some da ta  which show t h a t  body posi t ions 

Studies of head and eye pos i t i ons ,  with compensation f o r  d i r ec t ion  of 

gaze by means of prisms and n i r r o r s  a re  a l so  present ly  being conducted i n  

order t o  determine t h e  e f f e c t s  of  such pos i t i ona l  var ia t ions on v i s u a l  

d i r ec t ion  finding. 

In summary, much a t t e n t i o n  i s  being paid t o  the  hardware necessary t o  

ge t  a man t o  t h e  moon and t o  the  planets .  

t he  hardware w e  could not begin t o  get  man off the earth.  However, it is 

becoming increasingly apparent t h a t  unless we know what is happening t o  

t h e  man i n  space,  we m a y  be t ransport ing unresponsive cargo t o  the  moon and 

planets .  

t h e  conditions of space t r a v e l ,  how t o  s e l e c t  those men who would be least 

impaired by such conditions,  and how t o  o f f s e t  even the  minimal e f f e c t s  of 

such impairment. One important consideration is the determination of how 

There i s  no question t h a t  without 

We m u s t  t he re fo re  determine how man is  l i k e l y  t o  be affected by 
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much of t h e  guidance systems should be l e f t  i n  the  hands of  the  ast ronauts  

and how much should be automated. Solution of t h e  problems imposed by 

sensory deprivat ion Kill bring us a long way toward safeguarding man's 

journey i n t o  space. 
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EFFECT OF LOW-GRAVITY ON PHYSIOLOGICAL PROCESSES 

by 

Siegfr ied J. Gerathewohl 

National Aeronautics and Space Administration 

For more than one decade, t h e  e f f e c t s  of decreased accelerat ion on 

t h e  l i v i n g  organism have been s tudied i n  t h i s  country and abroad. 

24y 34’ 39 Actual experimental da t a  on animal and human physiology were 

obtained during Keplerian and b a l l i s t i c  f l i g h t s  of r e l a t i v e l y  sho r t  dur- 

a t ions  and from o r b i t a l  exposures l a s t i n g  up t o  f ive  days. 

Moreover, weightlessness was simulated by rater immersion, bed rest, and 

immobilization; and t h e  e f f e c t s  of these conditions on physiological,  

neurological  and psychological functions were compared with those observed 

under zero-G. 2 y  l4-l7’ 2o I n  this paper,  an attempt w i l l  be made t o  dis-  

cuss t h e  major problems involved i n  low-gravity experimentation and t o  

summarize t h e  da t a  avai lable  on t h e  e f f e c t s  of prolonged weightlessness. 

3’ 21- 

1 6-12, 18-20a, 40 

I n  this context ,  t h e  question must be answered about t h e  p o s s i b i l i t y  

of producting low-gravity s t a t e s  on Earth,  and about the v a l i d i t y  of  t h e  

pathophysiological symptoms obtained by simulation. F i r s t  of  a l l ,  l e t  m e  

point  out t h a t  of t he  th ree  conditions mentioned before - water immersion, 

bed r e s t ,  and immobilization - none produces t h e  low-gravity state,  and 

only submersion can claim t o  simulate weightlesshess t o  a c e r t a i n  degree. 

This a l s o  appl ies  t o  t h e  c l i n o s t a t i c  p r inc ip l e  or suspension on cables. I n  

t h e  submersed case,  t e r r e s t r i a l  physiologic re la t ionships  continue t o  e x i s t  

between various body t i s s u e s ,  organs and bones because of t h e i r  differences 
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i n  density. I n t e r e s t i n g l y  enough, it w a s  s t a t e d  by human t e s t  subjects  

who were exposed t o  immersion and z e r o 4  f l i g h t s  t h a t  t h e  experience of 

both conditions was essent ia l ly  t h e  same, namely of not being heavy. Hence 

w e  have accepted t h e  term "weightlessness" t o  describe t h e  subject ive ex- 

pereience of t h e  individual ,  whereas z e r o 4  describes t h e  physiological 

conditions involved. Since gravity as a physical force a c t s  a s  a "volume 

force", z e r o 4  can be obtained e i t h e r  i n  case of lack  of both gravi ty  and 

i n e r t i a  ( f o r  example, i n  f ie ld-free space and during drive-off) , o r  through 

t h e  mutual cancel la t ion of .grav i ty  and i n e r t i a  (as  i n  f ree- fa l l  and o r b i t i n g ) ,  

o r  as t h e  compensation of gravity by another volume force.13 

f i n i t i o n ,  excludes t h e  presence of any contact force,  regardless of t h e  kind 

o r  densi ty  of t h e  supporting medium. This reveals  t h e  fa l lacy  of using t h e  

Archimedian pr inc ip le  

* 

This, de- 

W = V(d-d')g 

t o  produce t h e  gravi ty-free condition. A t  b e s t ,  it can be used t o  simulate 

a c e r t a i n  state of weightlessness. It must be emphasized t h a t  t h e  t r u e  zero- 

I , G condition and the  concomitant s t a t e  of weightlessness a r e  physical paramet- 

e r s  or  space environmental factors  which cannot be duplicated on t h e  ground. 

Hence, experiments with water immersion and hypodynamics provide only limit- 

ed information about t h e  e f fec ts  of  low gravi ty  on t h e  human organism. In 

prolonged bed r e s t  or submersion, gravi ty  dependent e f f e c t s  a r e  always in- 

t imately mixed with those of i n a c t i v i t y ,  and they may r e l a t e  t o  our problem 

only so  long a s  spacef l igh t  involves a mixture of s t r e s s e s  produced by t h e  

l 

* 
The c a p i t a l  G ind ica tes  the balance of forces ,  not lack of accelerat ion 
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l i f e  i n  a small, cramped and uncomfortable space capsule. 

It must a l s o  be pointed out i n  t h i s  connection tha t  gravity+epend- 

ence of biological  functions i s  not very pronounced; at least not i n  t h e  

human body where stress and m a s s  d i s t r ibu t ions  are e n t i r e l y  d i f f e ren t  not 

only f o r  t he  standing, s i t t i n g  and lying posi t ion bu t  also f o r  lying on t h e  

back, on t h e  s i d e ,  o r  face down, and standing upright or  on the  head. The 

corresponding physiological tolerance limits d i f f e r  by several  hundred per  

cent. Thus, t h e  change from t h e  e rec t  t o  t h e  recunibant posture is not 

associated with an immediate o r  marked e f f ec t  on t h e  physiological fun- 

c t ions ,  but a r a the r  sub t l e  chain of biological  events is set i n  ac t ion  f o r  

t he  purpose of adjust ing the  organism t o  the  new condition. In general ,  

t h e  changes brought fo r th  or  associated with changes of g rav i t a t iona l  vec- 

t o r s  depend upon t h e  a l t e rna t ions  i n  t h e  mass-weight r a t i o  of t h e  body and 

t h e  various p a r t s  involved and a l s o  upon t h e  funct ional  cha rac t e r i s t i c s  of  

t h e  various organ systems concerned. The e f f e c t s  o f  low-gravity states on 

physiological functions as observed during or a f t e r  o r b i t a l  f l i g h t s  w i l l  

now be discussed i n  some d e t a i l .  



-XXIII-4- 

Results from Manned Space F l ights  Conducted i n  the  

United S ta tes  and i n  t h e  USSR 

The accelerat ion prof i le  of t h e  manned space f l i g h t s  conducted 

so far i s  schematically represented i n  Fig. 1. 

accelerat ion during launch, which may reach a maximum of 1 2  o r  more 

g,  a period of weightlessness prevai ls  during unaccelerated f l i g h t .  

Reentry i n t o  t h e  atmosphere generally produces a decelerat ion of t h e  

spacecraf t  and i t s  occupants of about t h e  same magnitude. 

p i l o t  s t a y s  i n  the  capsule, a shor t  but high impact accelerat ion may 

have t o  be to le ra ted .  Some of t h e  Russian astronauts  l e f t  t h e  capsule 

a f t e r  reentry and parachuted t o  t h e  ground. 

A f t e r  a r e l a t i v e  high 

I f  the  

The techniques used f o r  the  recording of t h e  main physiological 

parameters during f l i g h t s  of Soviet and American spacecraft a r e  shown 

i n  Table 1. Additional information on weightlessness e f f e c t s  were 

obtained from t h e  analysis of personal experiences, operat ional  per- 

formance, verbal  communications, TV, e n t r i e s  i n  log  books, handwriting, 

ves t ibu lar  t e s t s  and sensory functions, and by p r e f l i g h t  and pos t f l igh t  

biochemistry.4 

ava i lab le  f o r  t h i s  discussion. Moreover, the  i d e n t i f i c a t i o n  of weight- 

lessness  e f f e c t s  presents ser ious d i f f i c u l t i e s  because of t h e  great  

differences i n  t h e  duration of t h e  z e r o 4  periods, t h e  r e l a t i v e  s m a l l  

number of persons exposed t o  these conditions, t h e  var ie ty  and in- 

consistency of the  indexes used, and t h e  multitude of fac tors  involved 

To da te ,  not a l l  of t h e  data  have been analyzed or  a re  
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which do not warrant a s t a t i s t i c a l  evaluation. For example, t h e  per- 

sonal experiences of t he  ast ronauts ,  information on sensory functions 

and performance c r i t e r i a  were not tabulated s ince the  numerical data 

were scarce.  Nevertheless,  a f i r s t  approximation of t h e  e f f e c t s  of 

low-gravity on human physiology can be furnished by a systematic 

scrut iny of t he  b i t s  and pieces of information obtained from manned 

o r b i t a l  f l i g h t s .  

Personal Experiences and Operational Performance 

The Mercury astronauts  experienced t h e  weightless s t a t e  generally 

as pleasant  and relaxing. 27y 28 

nothing more, nothing less" after s i t t i n g  i n  h i s  pressure suit under 1 

G and the  launch  acceleration^.^^ 
weightlessness and soon took advantage of t h e  s i t ua t ion :  they l e f t  

t h e i r  feeding tubes and the  camera handing i n  the  air when not needed. 

There was no overreaching or lack of coordination. After t h e  proper 

v i sua l  perspective had been establ ished,  t h e  changing views from the  

capsule were not dis turbing,  and the  random or i en ta t ion  by means of 

ground, sky o r  horizon w a s  of no concern. The somatic sensations 

during weightlessness were normal, ea t ing  and drinking were accomplished 

without d i f f i c u l t i e s ,  and t a s t e  and smell  were undisturbed. No nausea 

01 vomiting occurred i n  any of these f l i g h t s .  

Scot t  Carpenter ca l l ed  it "a blessing-- 

The men adapted very quickly t o  

During t h e  Mercury missions, t he  ast ronauts  monitored t h e  space- 

craf t  systems, performed the  assigned i n f l i g h t  tasks  properly and were 

hampered on lyby  engineering f l a w s .  

on t h e  s t a t u s  of  t h e i r  systems and took over t h e  control  of t h e  c r a f t  

when t h i s  w a s  required.  

They reported accurately and c l ea r ly  

Subject ively,  t h e  men could t e l l  l i t t l e  
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difference between the work performed under 1 G and under zero-G; t h e  

e f f o r t  of z e r o 4  being, if anything, s l i g h t l y  eas ie r .  This included 

t h e  ca l ibra ted  physical exercise .  Deceleration at  r e t r o f i r e  was ex- 

perienced by Glenn as "moving back t o  Hawaii", by Carpenter as a stop.  

As t o  reentry,  Gordon Cooper s a i d :  

d i f fe ren t  from what we have done on the  centrifuge". 

accelerat ions were less  severe than expected and very wel l  t o l e r a t e d  

by t h e  American astronauts .  

"I don' t  f e e l  t h a t  it is any 

The impact 

31 

A l o t  of in te res t ing  impressions and observations was reported 

by t h e  cosmonauts and analyzed by Russian sc ien t i s t s .35  

ing and wri t ing tests were used i n  conjunction with t h e  assessment of 

operat ional  performance. 

movements were coordinated and smooth during and a f t e r  t r a n s i t i o n  t o  

zero-G, t h e i r  drawings of p ic tures  and handwriting were s l i g h t l y  changed, 

P ic ture  draw- 

While it w a s  concluded t h a t  t h e  p i l o t s '  

however. It is  known tha t  movements i n  handwriting require  t h e  f i n e s t  

coordination. The study of handwritings of Ti tov,  Nikolayev, Popovich, 

EIykovsky and Tereshkova showed t h a t  t h e  grea tes t  changes occurred during 

t h e  f i r s t  hours of weightlessness. Thereaf ter ,  t h e  motor coordination 

improved at a d i f fe ren t  time f o r  each p i l o t ,  and a gradual adaptation 

t o  the  new wri t ing condition took place. From t h e  samples analyzed it 

was  concluded t h a t  cen t ra l  nervous system functions were not dis turbed 

by t h e  weightless s t a t e .  

During t h i s  f l i g h t  per iod,  t h e  performance capabi l i ty  of t h e  

cosmonauts was suf f ic ien t ly  high. They performed manual control  t a s k s ,  

maintained or ien ta t ion  and radio communication, and navigated by means 

of c e l e s t i a l  and t e r r e s t r i a l  guides. They a t e  and drank normally and 
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experienced no d i f f i c u l t i e s  i n  ur inat ion and defecation. They f e l l  

asleep f a s t  and s l e p t  soundly and quiet ly .  A f t e r  awakening, the 

cosmonauts immediately s e t  t o  work. However, t h e r e  were some d i f f i -  

c u l t i e s  and p e c u l i a r i t i e s  i n  the  individual ' s  behavior and performance. 

For instance,  Bykovsky was very ac t ive ,  moved r ead i ly  and frequently,  

made many e n t r i e s  i n  the log  book, recorder on t ape ,  and kept up com- 

munication. In con t r a s t ,  Tereshkova moved very l i t t l e ,  he r  movements 

being slow and r e s t r i c t e d  i n  s i z e ,  and was r a the r  passive. 

individuals  differences a re  probably due t o  the different  adaptabi l i ty  

of t h e  mechanism regulat ing physiological functions t o  the new environ- 

mental condition An analysis of the  telemetry da t a  showed no path- 

o log ica l  disorders of the vegetative system. 

These 

The t r a n s i t i o n  from the  accelerated s t a t e  i n t o  weightlessness was 

experienced as l i g h t  and smooth by a l l  t h e  astronauts .  

s t a t e  and t h e  rel ieved nervous and physical s t r a i n  a f t e r  t h e  successful 

launch i n t o  o r b i t  w a s  associated with a f ee l ing  of well-being, increased 

speaking, and even a kind of euphoria. This s t a t e  of increased act iv-  

i t y  and excitement generally disappeared by t h e  end of the second or t h e  

beginning of t h e  t h i r d  o rb i t .  

The unusual 

Sensory and Neurophysiological Functions. 

Since o r i en ta t ion  i n  space depends primarily on visual  and vestib- 

u l a r  funct ions,  t e s t s  i n  both areas were made on the  American and Russian 

astronauts .  

within t h e  Mercury capsule with l e t t e r s  of decreasing s ize  and with 8 

"spoked wheel" pa t t e rn  t o  check v i sua l  acui ty  and astigmatism. 

Tvo small eye charts  were attached t o  the  instrument panel 

No change 
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from normal w a s  apparent. The aStrOnaUt.5 were able  t o  t r a c k  t h e  SUS- 

t a i n e r  engine v isua l ly  without d i f f i c u l t y .  

on depth and color  v i s ion ,  Carpenter described cor rec t ly  t h e  dis tance,  

color ,  and br ightness  of the objects.30 

Glenn t racked a rapidly moving l i g h t  spot generated by h i s  f inger- t ip  

l i g h t s .  

dizziness  or  nausea.29 

t i o n s .  Detai ls  of ground fea tures ,  such as v i l l a g e s ,  f i e l d s ,  roads, 

houses, a wake on t h e  ocean, and smoke from chimneys, were reported 

which were thought t o  be f a r  beyond the  resolut ion of t h e  human eye. 

However, calculat ions by Duntley show t h a t  such s ight ings are not im- 

possible  by an observer at o r b i t a l  a l t i t u d e s ,  i f  h i s  v i s u a l  c a p a b i l i t i e s  

are l i k e  those of t h e  astronauts ,  and i f  t h e  atmospheric conditions and 

t a r g e t  propert ies  a r e  l i k e  those assumed f o r  t h e  calculat ions.  As t o  t h e  

ves t ibu lar  functions, head movements during zero-G had no ef fec t  on well- 

being o r  or ien ta t ion  a b i l i t y .  

c a l o r i c  tests and r e t i n a l  photography a f t e r  f l i g h t  revealed no s i g n i f i c a n t  

changes from pref l igh t  resu l t s .  

In  a spec ia l  experiment 

Using only eye movements, 

He had no d i f f i c u l t i e s  during t h i s  task  and no sensat ion of 

There were no mental aberrat ions or  hallucina- 

32 

A point ing t e s t  during f l i g h t  as w e l l  as 

Several i n t e r e s t i n g  observations were made by t h e  Russian cosmonauts. 

Ti tov,  who reportedly showed a high degree of ves t ibu lar  s t a b i l i t y  in  pre- 

and post-f l ight  examinations, experienced short  periods of ver t igo  upon 

enter ing weightlessness and per iodic  a t tacks of nausea a f t e r  t h e  fourth 

o r b i t .  They were aggravated by head movements and t h e  associated v i s u a l  

input .  

e n t i s t s  t o  be produced by a "deafferentation" of neural  funct ions,  have 

been described by a number of our t e s t  subjects  during Keplerian 

This type of "space sickness" which is thought by Russian s c i -  
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t r a j e c t o r i e s .  The disturbances disappeared upon restorat ion of accel- 

e r a t i v e  forces.35 

of t h e  other  American or Russian space p i l o t s .  

None of these symptoms w a s  reported,  however, by any 

Ti tov 's  experience, which cer ta in ly  w a s  of vest ibular  o r i g i n ,  has 

led  t o  some speculations about man's tolerance t o  weightlessness under 

unres t ra in t  conditions. When released from h i s  res t ra ining devices ,  

Bykovsky made f a s t  movements and f loa ted  about t h e  cabin r o l l i n g  and 

shaking h i s  head. No unpleasant feel ings were noted during t h i s  ex- 

e r c i s e .  He reported t h a t  or ien ta t ion  i n  t h e  dark or w i t h  eyes closed 

was r a t h e r  d i f f i c u l t .  Popovich or ien ted  himself in  a similar s i t u a t i o n  

by t h e  sound of a fan. It i s  now concluded t h a t  Titov's experience 

demonstrates t h e  individual  differences i n  ves t ibu lar  tolerance and 

t h a t  he w a s  a poor choice as a space p i l o t .  26 

Electroencephalograms were recorded from t h e  las t  four cosmonauts. 

Changes i n  Bykovsky's EEG were r a t h e r  ambi'guous. 

var ied subs tan t ia l ly ;  f o r  example, t h e  alpha rhythm index ranged from 

35 t o  57 per cent during t h e  f i r s t  t o  fourth o r b i t  and reached 85 per  

cent at t h e  51st o r b i t .  Tereshkova's be ta  rhythm index decreased while 

her  t h e t a  rhythm increased during t h e  weightless state. However, both 

indexes var ied  considerably. The alpha index ranged from 25 t o  40 per  

cent  during t h e  f i r s t  two days, then increased up t o  70 per cent ,  and 

l a t e r  f e l l  t o  38 per cent  by the  end of t h e  f l i g h t .  During t h e  f i r s t  

few days a f t e r  t h e  f l i g h t ,  Tereshkova showed a cer ta in  change i n  t h e  

c o r t i c a l  a c t i v i t y  expressed i n  a decrease of the  alpha rhythm. 

t ras t ,  Bykovsky showed a marked exc i ta t ion  6f t h e  slpha rhythm on t h e  

f i r s t  and second day a f t e r  h i s  re turn  t o  Earth,  but h i s  c o r t i c a l  

Alpha and b e t a  rhythms 

I n  con- 
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r e a c t i v i t y  determined by the  b i o e l e c t r i c a l  react ion t o  l i g h t  s t i m u l i  

was lowered. The r e s u l t s  of examinations 1 5  days a f t e r  t h e  f l i g h t  showed 

no changes from t h e  pre-f l ight  values. 

The analysis  of the  t rac ings  of Tereshkova's electro-oculograms 

revealed short-term nystagmoid react ions which occurred a t  the  38th 

and 45th o r b i t .  

iences o r  evidence of  vest ibular  disturbances. By the  end of t h e  f l i g h t ,  

both astronauts  showed a decrease i n  oculomotor a c t i v i t y .  Basic ves- 

t i b u l a r  t e s t  r e s u l t s  before and a f t e r  t h e  f l i g h t  did not d i f f e r  s ig-  

n i f i c a n t l y  and indicated a normal tolerance t o  complex v isua l  and 

mechanical s t imul i .  

However, there  were no concomitant subject ive exper- 

Respiratory Functions 

Respiration rates of t h e  Mercury astronauts  have ranged from 20 t o  

40 breaths  per  minute at  sus ta iner  engine cut-off, from 8 t o  20 breaths  

per  minute during weightlessness, and from 20 t o  32 breaths  at reentry 

(Fig.  2) .  

short  t o  the longer f l i g h t s .  Astronaut Shepard maintained a breathing 

r a t e  at  a range from 15 t o  20 breaths per  minute during count-down. A 

peak of 40 occurred during launch, and it was 20 near the  end of t h e  shor t  

weightless period. The average resp i ra t ion  r a t e  of t h e  orb i t ing  astron- 

au ts  during weightlessness w a s  about 15 breath per minute. Compared t o  

t h e  pref l igh t  values ,  t h i s  is a s l i g h t  decrement, which i s  i n  accordance 

with t h e  measured oxygen consumption of 18 l i t e r s  per  hour and a res-  

p i ra tory  quot ient  of 0.83 f o r  the longest coast ing periods. 

mean metabolic r a t e  during t h e  periods of weightlessness equaled t h a t  

There was an inversion of t h e  resp i ra tory  r a t e s  from t h e  

Hence, t h e  
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of a non-fasting man under conditions of r e s t  and t e r r e s t r i a l  gravi ty .  

The recording technique used by t h e  Russians consisted of two 

pick-ups which measured ( a )  the  changes of t h e  perimeter of t h e  thorax,  

and ( b )  resp i ta t ion  r a t e .  During Gagarin's short  o r b i t a l  f l i g h t ,  h i s  

r a t e  of breathing increased from about 24 t o  37, then decreased and 

l a t e r  f luctuated within t h i s  range. I n  s p i t e  of Ti tov 's  discomfort at  

various port ions of t h e  f l i g h t ,  h i s  resp i ra t ion  r a t e  was general ly  

lower than Gagarin's. The man value f o r  t h e  f i r s t  o r b i t  was about 

23, decreasing t o  about 15  during the 14th o r b i t ,  and slowly increas- 

ing t o  about 20 at  t h e  end of h i s  f l i g h t  (Fig. 3 ) .  During t h e  f i r s t  

day of t h e  Russian twin f l i g h t ,  a decrement in  t h e  number of breaths  

w a s  observed i n  both astronauts  .33 Then Nikolayev's values increased 

somewhat and reached a maximum by t h e  end of t h e  t h i r d  day, which w a s  

followed by a decrease. Popovich's f igures  showed a d i f fe ren t  t rend:  

it decreased almost cont inual ly  during the  e n t i r e  f l i g h t .  I n  t h e  second 

twin f l i g h t ,  t h e  resp i ra t ion  r a t e  was within 1 2  t o  25 breaths per  minute 

for  t h e  two as t ronauts ,  but no figures on resp i ra tory  volume and RQ were 

ava i lab le  f o r  t h i s  review. Studies on breathing and gas exchange i n  

t h e  p o s t f l i g h t  period revealed a s l i g h t  increase i n  minute volume: 

Bykovsky's rose  from 211 t o  284 cm3 and Tereshkova's from 172 t o  230 

cm3 per  minute. A l l  values were normal two days after the f l i g h t .  

Cardiovascular Functions 

Cardiac a c t i v i t y  has been recorded during o r b i t a l  f l i g h t s  by means 

of e lec t ro-  , phono- and kinetocardiography . Electro-cardiograms and 
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blood pressure readings were obtained i n  Project  Mercury.32 

r a t e s  measured during Mercury f l i g h t s  var ied from 80 t o  100 beats  

per minute during wakeful periods m.d from 50 t o  60 beats per 

minute during s leep  (Fig.  4 ) .  Elevated r a t e s  recorded during 

weightlessness were usually a t t r ibu ted  t o  spec ia l  i n f l i g h t  a c t i v i t i e s .  

The changes noted i n  t h e  electrocardiogram (ECG) included a l t e r a t i o n s  

i n  t h e  pacemaker a c t i v i t y  with wandering pacemakers and aberrant  

rhythm, such as a t r iovent r icu lar  nodal beats and rhythm, premature 

a t r i a l  and vent r icu lar  contract ions,  s inus bradycardia, a t r i a l  rhythm, 

and var ia t ions  of R-wave t o  R-wave i n t e r v a l s ,  which were unrelated t o  

physical a c t i v i t y  and greater  than those caused by sinus arrhythmia. 

Sys to l ic  blood pressure increased during weightlessness and f e l l  below 

normal values during t h e  pos t f l igh t  phase. Diastol ic  blood pressure 

data  were incons is ten t ,  but pulse pressure was generally high i n  t h e  

weightless s t a t e .  A l l  of these "abnormalities" were considered normal 

physiologic responses when r e l a t e d  t o  t h e  dynamic and operat ional  sit- 

uation in  which they were encountered. An unusual high hear t  r a t e  

accompanied by a d r a s t i c  f a l l  i n  blood pressure ( o r t h o s t a t i c  hypoten- 

s ion)  was observed a f t e r  landing. 

f e l t  "light-headed" upon egress from t h e  capsule. 

f e e t  were swollen and reddish-purple par t icu lar ly  during standing. 

These symptoms pers i s ted  for  severa l  days a f t e r ' t h e  two longest f l i g h t s .  

A deta i led  survey of the react ion of t h e  cardiovascular system 

under conditions of weightlessness based primarily on the  Russian f l i g h t  

data  w a s  given by Bayevskiy q d  Gaienk0.l They analyzed t h e  physio- 

l o g i c a l  changes observed on severa l  components of t h e  cardiovascular 

functions. 

Pulse 

The last two Mercury astronauts  

Moreover, Schi r ra ' s  

37 
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( a )  Pulse Rate. 

of the  cosmonauts re turned t o  normal from peak values produced by t h e  

preceding launch accelerat ion.  This res tora t ion  process general ly  

takes  longer than a f t e r  centr i fuge runs on the  ground.36 The mechanism 

of t h e  delayed adaptation of the  c i rcu la tory  processes under weightless- 

ness is complex and r a t h e r  d i f f i c u l t  t o  assess .  Apparently, t h e  changes 

of t h e  mechanoreceptoric input increase t h e  e x c i t a b i l i t y  of t h e  regulatory 

centers  involved, and t h i s  m a y  cause the  abnormally long delay observed 

under low-gravity conditions. After severa l  hours, the  pulse r a t e  slowed 

down below t h e  normal values and f r o m t h e r e  on showed diurnal  var ia t ions :  

it accelerated i n  t h e  morning and decreased at  night .  The rates were 

fur ther  reduced during s leep.  Moreover, s i g n i f i c a n t  changes occurred 

i n  t h e  d i s t r i b u t i o n  of t h e  time periods of t h e  cardiac cycle. The 

change i n  t h e  pulse  r a t e  of th ree  cosmonauts i n  shown in  Fig. 5. 

( b )  

In  t h e  ear ly  period of weightlessness, t h e  pulse r a t e  

Time Charac te r i s t ics  of t h e  ECG. As was the  case with t h e  Mercury 

as t ronauts ,  t h e  a t r i o v e n t r i c u l a r  contract ion t i m e  of  the Russian cos- 

monauts increased and showed rhythmic var ia t ions.(Fig.6)  

i n  t h e  morning i n  Bykovsky 

Nikolayev 

t h e  r a t i o  of t h e  duration of the  e l e c t r i c  s y s t o l e  t o  the durat ion of 

t h e  e n t i r e  cardiac cycle ,  revealed changes i n  d i f f e r e n t  d i rec t ions :  it 

increased i n  t h e  morning i n  Nikolayev, Popovich and Tereshkova, but  it 

decreased i n  Bykovsky. The amplitude of t h e  T-wave increased i n  time 

(Fig. 7). 

It was shor te r  

and Tereshkova, but  re la t ive ly  longer i n  

An analysis  of the  s y s t o l i c  index, t h a t  i s  and Popovich.’ 

( c )  Cardiovascular Mechanics. The durat ion of the  mechanical sys to le  

w a s  determined from phono- and kinetocardiograms. I n  Titov, t h e  durat ion 
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of the  mechanical systole  before launch w a s  0.35 seconds. I t  increased 

t o  0.47 seconds during the  period from the  7th through t h e  13th o r b i t .  

Kinetographic s tud ies  showed t h a t  a f t e r  f i v e  hours of weightlessness 

Ti tov 's  electromechanical l a g ,  t h a t  i s  t h e  time from t h e  Q-wave of t h e  

ECG t o  t h e  start  of the mechanical s y s t o l e ,  increased from 0.03 t o  0.05 

seconds during t h e  13th o r b i t .  

The coordination of t h e  contractions of the  r i g h t  and l e f t  halves 

of t h e  hear t  i s  an important index of  the  s t a t e  of the  myocardial fun- 

c t ion.  

time. Even a minor impairment of t h e  ex is t ing  re la t ions  r e f l e c t s  it- 

s e l f  i n  t h e  seismo- and phonocardiogram. Studies on Bykovsky and 

Tereshkova showed an increase i n  the  duration of both cycles on t h e  

second and t h i r d  day of t h e  f l i g h t .  

( d )  Phase Qual i ty  of the Cardiovascular System. There a r e  t h r e e  dis-  

t i n c t  phases of t h e  cardiovascular response t o  zero-G: 

Normally, t h i s  a c t i v i t y  i s  s t r i c t l y  defined i n  magnitude and 

1. The pulse r a t e  decreases slowly and f luc tua tes  considerably 

a f t e r  t r a n s i t i o n  from the accelerated s t a t e  i n t o  weightlessness. 

Changes i n  other  charac te r i s t ics  a re  undefined. 

2.  There i s  an apparently incomplete re turn  of  t h e  pulse rate 

t o  normal associated with an increase i n  t h e  a t r iovent r icu lar  con- 

t r a c t i o n  period. The duration of t h e  e l e c t r i c a l  sys to le  increases  

s l i g h t l y ,  while t h e  mechanical sys to le  shortens a t  f i r s t  and then 

lengthens. A r t e r i a l  pressure i s  pers i s ten t ly  low with a b r i e f  rise 

at t h e  end of t h e  10 t o  12 hour period. The f i r s t  cycle of the  kin- 

etocardiogram shortens.  According t o  phonocardiographic da ta ,  t h e  

i n t e n s i t y  of the  sounds increases ,  and there  i s  an appreciable 
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lengthening of t h e  second sound. 

3. There a re  d i s t i n c t  changes i n  almost all of the charac- 

t e r i s t i c s  of t he  cardiovascular system i n  the t h i r d  phase. The pulse 

rate s t a b i l i z e s  a t  a somewhat lower l e v e l  than normal. Atr ioventr icular  

contraction t i m e  lengthens s l i g h t l y .  There i s  a d i s t inc t  diurnal  rhythm 

i n  a t r ioven t r i cu la r  contract ion,  duration of t h e  e l e c t r i c  sys to l e ,  and 

s y s t o l i c  index. 

The results obtained from American and Russian sources ind ica t e  

t h a t  i n  weightlessness the cardiac a c t i v i t y  i s  reorganized; t h a t  i s ,  

t h e  t ime and amplitude correlat ions of t he  forces generated i n  the  hea r t  

a r e  changed. 

t o  be r e l a t e d  t o  the decrease of mechanical stress. The changes i n  

s y s t o l i c  and d i a s t o l i c  blood pressure,  pulse r a t e ,  and i n  the  mechanical 

and e l e c t r i c a l  sys to l e s  a re . c lose ly  r e l a t e d  t o  the  reduction i n  the min- 

u t e  volume of t he  hear t .  Apparently, t he  decreased energy consumption i n  

muscular a c t i v i t y  under the  condition of weightlessness results i n  fewer 

demands of t h e  organism on the cardiovascular system. 

There i s  an "unloading" react ion of t h e  heart  which seems 

After r e t u r n  t o  Earth,  t h e  R u s s i a n  cosmanauts suffered from t h e  de- 

crease i n  ar ter ia l  blood pressure BS well  as i n  t he  sys to l i c  and minute 

blood volume. 

deconditioning" and a t t r i b u t e  it t o  weightlessness. 

tests taken seve ra l  days a f t e r  f l i g h t  revealed t h e  persistence of t h i s  

syndrome. 

The Russian s c i e n t i s t s  c a l l  t h i s  syndrome "ca rd iovscu la r  

The o r thos t a t i c  

, 
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General Metabolism, Energy, and Physical Strength 

The s ignif icance of lack  of physical  s t r e s s  and exercise  f o r  t h e  

maintenance of various metabolic and vegetat ive functions has been 

demonstrated i n  laboratory experiments and i n  f l i g h t .  In experiments 

conducted i n  z e r o 4  parabolas, t h e  muscle s t rength  of t h e  hand was  

measured by Yuganov and c o - ~ o r k e r s . ~ ~  They assumed t h a t  t h e  reduction 

in  s t rength  found i n  almost a l l  cases w a s  caused by a change i n  t h e  

ton ic  tension of t h e  muscles and by funct ional  changes i n  t h e  CNS 

caused by weightlessness. 

and Popovich during o r b i t a l  f l i g h t  shoved t h a t  the s t rength  of t h e  fore- 

arm and w r i s t  muscles was lower by 6 t o  8 kg f o r  t h e  r i g h t  hand, and by 

4 t o  7 kg f o r  t h e  l e f t  hand, respect ively.  

in te res t ing  t o  note t h a t  t h e  prolonged sustaining of a c e r t a i n  posture 

and t h e  r e s t r i c t e d  mobility resu l ted  i n  an acute need f o r  muscular work. 

Nikolayev and Popovich conducted more exercise  than required by t h e  

f l i g h t  plan. 

fa t igue ,  re laxes ,  l i f t s  the s p i r i t s ,  and cheers t h e  heart."33 

Dynamometric da ta  obtained from Nikolayev 

In t h i s  connection it is  

In  t h e  words of t h e  cosmonauts, muscular work "removed 

Calibrated exercise  w a s  performed by t h e  Mercury astronauts  during 

t h e  longer f l i g h t s .  

used through a dis tance of 6 inches. 

cord once per  second f o r  30 seconds. As a r e s u l t ,  h i s  pulse rate in- 

creased from 80 per  minute t o  12h per minute but returned t o  84 within 

two minutes. 

Generally, t h e  responses of t h e  organism t o  exert ion during weightlessness 

A hand-held bungee cord with a 16-pound p u l l  w a s  

Glenn exercised by pul l ing  t h e  

The blood pressure w a s  129/76 before t h e  129/74 a f t e r  work. 
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were within t h e  ranges observed under 1 G conditions. Bykovsky's 

rout ine included cer ta in  i so tonic  exercises ,  which d id  not prevent 

p o s t f l i g h t  fa t igue ,  o r t h o s t a t i c  hypotension, and s t r e s s  intolerance 

f o r  severa l  days. For example, h i s  exercise  to le rance  decreased by 

35 per cent. 

ind ica ted  t h e  decreased muscular reserves  and corroborate s imilar  ef- 

f e c t s  

Both oxygen consumption r a t e s  and the  t i l t - t a b l e  tests 

observed on Schi r ra  and Cooper. 

The post-f l ight  weight loss reported f o r  a l l  astronauts i s  shown 

i n  Table 2. It does not seem t o  be r e l a t e d  t o  t h e  duration of  t h e  

weightless period. It m a y  r e f l e c t  t h e  re-dis t r ibut ion of body f l u i d  

due t o  t h e  el iminat ion of t h e  hydrostat ic  component. 

i n  a readjustment of body f l u i d  t o  t h e  weightless condition. 

re turn  t o  normal grav i ty ,  t h i s  e f f e c t  contr ibutes  t o  the  reduced blood 

volume and may play a par t  i n  t h e  observed stress tolerance of t h e  

as t ronauts  . 

This r e s u l t s  

Upon 

The r e s u l t s  of t h e  ur ine and blood chemistry tests conducted on 

t h e  Mercury astronauts  a r e  shown i n  Tables 3 through 5. There seems 

t o  be a mobilization of  t h e  s k e l e t a l  minerals i n  Carpenter, bu t  fo r  

t h e  o ther  p i l o t s  t h e  data  a r e  incons is tan t ,  although there a r e  in-  

d ica t ions  of an increased urinary potassium excretion, (Table 3 ) .  

There i s  also a t r a c e  of hypercalcemia (Table 41, and per ipheral  

blood changes, of which t h e  increase i n  hematocrit and monocytes may 

be r e l a t e d  t o  weightlessness (Table 5 ) .  Enzyme a c t i v i t y  da ta  a re  

r a t h e r  inconclusive. 

lytes revea l  t h a t  blood calcium w a s  maximal i n  t h e  immediate post- 

f l i g h t  period but  returned t o  the  pref l igh t  leve ls  i n  less  than one 

The per ipheral  blood values  including e lec t ro-  
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day. Such changes are only suggestive because of t h e i r  low magnitude, 

and they may have been caused by a var ie ty  of fac tors  including de- 

hydrat ion,  hyperthermia, loss of weight, immobilization, s i t u a t i o n a l  

stress, and even laboratory var ia t ions.  Post-flight hypercalcuria 

never exceeded p r e f l i g h t  var ia t ions under both normal and under s t r e s s  

conditions. 

The study of cer ta in  metabolic indices  i n  t h e  Russian cosmonauts 

w a s  a l s o  made by means of blood and ur ine analyses a t  various occasions 

severa l  days p r i o r  t o  and a f t e r  t h e   flight^.^ 
period,  t h e  p i l o t s  shared changes i n  t h e  enzyme a c t i v i t y  and blood 

composition which are typica l  of physical and emotional s t r e s s .  The 

symptoms declined during the  r e s t  period. 

During t h e  prelaunch 

Post-f l ight  analyses showed an increase i n  t h e  pro te in  content of 

t h e  blood and a l s o  a s l igh t  e levat ion of t h e  l e v e l  of t h e  s e m  mucoids. 

Moreover, t h e  s t e r o i d  level  i n  t h e  ur ine of t h e  cosmonauts increased t o  

t h e  upper normal l e v e l ,  whereas t h e  DNA a c t i v i t y  decreased. All t h e  bio- 

chemical and metabolic a l te ra t ions  i n  t h e  s t a t e  of t h e  organism a f t e r  

f l i g h t  could be interpreted as a generalized s t r e s s  response. A survey 

of some of t h e  per ipheral  blood data  of one American and two Russian 

astronauts  i s  given i n  Table 6. This t a b l e  shows consis tent  increases  

i n  leucocytes, neutrophils, monocytes, and elevated erythrocyte  sedi- 

mentation r a t e  (ESR) . I n  cont ras t ,  thrombocytes and lymphocytes a r e  

found i n  decreesing numbers a f t e r  the  f l i g h t s .  The values were obtained 

shor t ly  before  and two days a f t e r  t h e  exposure. 

The dependence of muscle mass and s t rength  on gravi ta t iona l  and 

physical  s t r e s s  i s  a l s o  well es tabl ished.  

of exercise  can cause hypokinesia, t h a t  i s  s o f t ,  weak and flabby muscles. 

Low gravi ty  s t a t e s  and lack 

25 
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The dependence of muscle mass and s t rength  on gravi ta t iona l  and 

physical  s t r e s s  i s  a l s o  wel l  es tabl ished.  Low gravi ty  s t a t e s  and 

lack of exercise  can cause hypokinesia, t h a t  is s o f t ,  weak and flabby 

muscles .25 

depends on mechanical forces such as those produced by weightbearing 

and muscle tension.  

coupled with t h e  enforced i n a c t i v i t y  of f l i g h t  may very well result 

i n  disuse atrophy of t h e  musculoskeletal system and a lowered m e t -  

abol ic  r a t e .  Therefore, nitrogen and mineral balance can be dis- 

turbed. I f  t h e  hypercalcuria i s  severe,  osteoporosis and s tone for- 

mation i n  t h e  ur inary t r a c t  may occur. 

Moreover, t h e  maintenance of normal s k e l e t a l  metabolism 

The absence of s t r a i n  i n  support o f t h e  body 

Following seven days of water immersion, Graveline and co-workers 

found a marked decrease i n  work capaci ty ,  subject ive weakness, and in- 

creased ni t rogen excret ion i n  human subjects .  There a l s o  was an in- 

creased mobilization of calcium, phosphor, s u l f u r ,  and potassium. 

These experimental f indings s t a r t e d  a whole s e r i e s  of simulation 

s tudies  of weightlessness. 

14-16 

A consis tent  potassium and calcium loss  w a s  reported as a result 
.^ 

of t h e  longer Mercury f l ights ."  

scarce. According t o  t h e  l a t e s t  repor t s ,  Par in  seems t o  be q u i t e  con- 

cerned about t h e  p o s s i b i l i t y  of physical  deconditioning and bone de- 

mineral izat ion during longer  f l i g h t s  .26 He now suggests programmed 

physical  exerc ise  as a possible  remedy. Yazdovskiy bel ieves  t h a t  

a r t i f i c i a l  g rav i ty  may be t h e  most e f fec t ive  but  d r a s t i c  means f o r  

prophylaxis. Extensive experiments and invest igat ions are planned 

Russian data  on t h i s  subject are 
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t o  solve t h i s  problem and t o  protect  t h e  astronauts against  t h e  harm- 

fu l  e f f e c t s  of long-term weightlessness. 

Reentry S t ress  Tolerance 

The adaptations which occur during low gravi ty  s t a t e s  will probably 

be qui te  appropriate t o  these conditions and may not impair t h e  func- 

t i o n a l  i n t e g r i t y  of t h e  organism u n t i l  it returns  t o  the  t e r r e s t r i a l  

o r  another grav i ta t iona l  environment. In p a r t i c u l a r ,  major concern 

has been voiced about the e f f e c t  of weightlessness on the  physiolo- 

g i c a l  tolerance t o  t h e  high accelerat ions which occur during the  

reentry of t h e  spacecraft i n t o  t h e  atmosphere of the  Earth. 

t h e  operat ional  point  of view, t h e  pr inc ipa l  question i s  whether t o  

permit low-gravity adaptation of t h e  organism or take measures t o  

prevent it. 

adjustment appears t o  be des i rab le .  

may be a t h r e a t .  

Soviet s c i e n t i s t s  a r e  alarmed about t h e  d i f f i c u l t i e s  t h e  cosmonauts 

experienced during readaptation t o  the  t e r r e s t r i a l  force f i e l d .  

Poten t ia l ly  i r revers ib le  e f f e c t s  of zero-G, which could occur a f t e r  

long-term exposure, may involve syncope or  cardiovascular col lapse 

produced by a high accelerat ion pulse. 

From 

As t o  t h e  sensory and psychological funct ions,  a z e r o 4  

Physiological ly ,  the  adaptation 

I f  the recent  reports  from Russia a r e  cor rec t ,  t h e  

In  order t o  estimate t h e  e f f e c t s  of weightlessness on reentry 

tolerance,  the changes in hear t  r a t e  and resp i ra t ion  r a t e  caused by 

weightlessness and reentry s t r e s s  were p lo t ted  as a function of t h e  

length of the  weightless exposure. Figure 8 shows t h e  percentage 



-XxII I -P l -  

d i f ferences between i n f l i g h t  values and t h e i r  maxima recorded during 

reentry.  Although t h e  data  were not obtained under i d e n t i c a l  con- 

d i t i o n s  - f o r  instance,  t h e  magnitude and duration of the acceler-  

a t ions  d i f f e r  considerably - they show an increase of the v i t a l  

functions with increasing f l i g h t  durations of t h e  Mercury as t ro-  

nauts. The cor re la t ions  a r e  not c lear ly  es tab l i shed  f o r  t h e  two 

functions measured. Only the  hear t  rate increases  cont inual ly ,  while 

t h i s  may be due t o  t h e  f a c t  t h a t  the  p i l o t  tends t o  hold h i s  breath 

under high accelerat ion stress, whereas he cannot control  h i s  hear t  

r a t e .  Both s t r e s s  functions have not leveled o f f  ye t .  As long as 

t h e  f i n a l  plateau has not been establ ished,  t h e  physiological  i m -  

p l i c a t i o n s  warrant ser ious consideration. 

I n  a similar way, the  Russian s c i e n t i s t s  have t r i e d  t o  determine 

t h e  e f f e c t  of reentry s t r e s s  on tne  hear t  rate of t h e i r  cosmonauts 

after increasing periods of weightlessness. I n  Table 7, t h e  mean 

values of t h e  pulse rates a r e  given for  Ti tov,  Nikolayev and Popovich 

during max imum accelerat ion associated with launch and reentry. They 

are compared with t h e  values obtained during t h e  last few minutes of 

weightlessness, and t h e  percentage differences a r e  contained in  the  

last  column of  t h i s  t a b l e .  

l a t i o n s h i p  between t h e  time spent in  the  weightless condition and t h e  

pulse  r a t e :  

nounced i s  t h e  increase i n  pulse r a t e  during t h e  reent ry  accelerat ion.  

Thus, Ti tov ' s  pulse r a t e  increased by 2 per  cent ,  Nikoleyev's by 23 

per  c e n t ,  and Popovich's by 72 per cent .  

hear t  r a t e  w a s  given as 160, Tereshkova's 178 beats  per  minute, 

An inspect ion of  t h e  data  shows t h e  re-. 

t h e  longer t h e  period of weightlessness, the m r e  pro- 

A t  r een t ry ,  BykovsQ's  
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amounting t o  an increase of  150 and 140 per  cent over the z e r o 4  values,  

respect ively.  Their respiratory r a t e s  a l so  reached maximum values. These 

da t a  supplement our Mercury findings and emphasize t h e  importance of a 

very ca re fu l  appraisal  of the problem. 

An analysis  of t he  da t a  obtained from manned exposures t o  low-gravity 

s t a t e s  shows t h a t  ce r t a in  neurophysiological and physiological functions 

of t he  American and Russian space f l i e r s  were affected by t h e  z e r o 4  con- 

d i t i ons  (see Tables 8 - 10) .  However, it must be pointed out t h a t  no 

changes i n  t h e i r  s t a t e  of heal th  was noted during t h e  in f l igh t  periods. 

There seems t o  occur a cer ta in  adaptation of the major v i t a l  functions 

t o  the  weightless condition, which i s  generally characterized by a s t a t e  

of  reduced metabolism and an associated s t a t e  of decreased pulmonary and 

cardiac a c t i v i t y .  This adaptation, which m a y  be funct ional ly  adequate t o  

t h e  low grav i ty  state,  w a s  found t o  be t r ans i en t  and of d i f f e ren t  physio- 

l og ica l  s ignif icance f o r  the individuals  involved. No e s s e n t i a l  differences 

i n  the  tolerance of t he  zero-G condition seem t o  e x i s t  between astronauts  

of d i f f e ren t  sex.  It thus seems r a the r  d i f f i c u l t  t o  predict  t he  d i r ec t ion  

of Purtber funct ional  s h i f t s  during f l i g h t s  of longer durations and t h e i r  

e f f e c t s  on t h e  physiology of t h e  weightless man. 

The c l i n i c a l  and medical da t a  obtained through pos t f l i gh t  exam- 

ina t ions  showed generalized s t r e s s  responses of t h e  cen t r a l  nervous 

system, the  cardiovascular system, and the  metabolic system. They w e r e  

such as t o  be associated w i t h  common symptans of  f a t igue ,  emotional and 
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vascular l a b i l i t y ,  weight l o s s ,  changes i n  b a c t e r i c i d a l  propert ies  of 

t h e  sk in ,  and biochemical o r  hormonal a l t e r a t i o n s  of blood and ur ine.  

So f a r ,  these symptoms were t r a n s i e n t  in  nature and could be r e l a t e d  

t o  t h e  unavoidable s t r a i n  produced by t h e  prolonged and demanding 

f l i g h t s .  Certain symptoms were c lear ly  produced by weightlessness 

or  - a t  l e a s t  - seemed t o  be very closely associated w i t h  t h e  durat ion 

of exposure t o  t h e  weightless s t a t e .  The physiological  disturbances 

observed - i n  p a r t i c u l a r ,  o r t h o s t a t i c  hypotension, cardiovascular de- 

condi t ioning,  and demineralization of the  body - receded after a few 

days and later disappeared completely. However, t h e i r  occurrence 

a f t e r  t h e  Mercury and Vostok f l i g h t s ,  which were of r e l a t i v e l y  short  

durat ions,  and t h e i r  apparent dependence on the  length of t h e  low- 

gravi ty  per iod a re  a mat ter  of grave concern f o r  fu ture  long-term 

mission planning. 
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RESULTS OF URINE TESTS 
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Figure 5 
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EFFECTS OF HIGH-GRAVITY ON PHYSIOLOGICAL PERFORMANCE 

bY 

Randall M. Chambers 

U. S. Naval A i r  Development Center 

The primary purpose of t h i s  paper is t o  suarmarize the e f f e c t s  of 

high g rav i ty  on t h e  physiological and psychological performance cap- 

a b i l i t i e s  of  man, and t o  review some of t h e  major simulation s tud ie s  

which have concentrated on these aspects .  

conducted t o  obtain da t a  regarding t h e  e f f e c t s  of high acceleration 

environments on t h e  physiological and psychological capab i l i t i e s  of  

man. 

per ta ined d i r e c t l y  t o  manned spacecraf t  systems under development and 

test. Others provide more general  s c i e n t i f i c  findings and p r inc ip l e s  

which contr ibute  t o  the  understanding of t h e  physiologic and psy- 

chological  responses which man makes during exposure t o  changes i n  

h i s  accelerat ion environment. 

t i c u l a r  f indingsand p r inc ip l e s ,  although some mention i s  made of  

simulation s tud ie s  which have attempted t o  provide spec i f i c  information 

i n  support of P ro jec t s  Mercury, Dyna-Soar, Gemini and Apollo. 

scope of t h i s  paper does not permit coverage of a l l  t h e  different  types 

of accelerat ion environments; consequently, it i s  necessary t o  l i m i t  t h e  

Many s tudies  have been 

Some of  these s tudies  have provided highly spec i f i c  da t a  which 

! 

This paper concentrates on these  par- 

The 
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material pr imari ly  t o  problems involving high sustained l i n e a r  accel- 

e r a t ions ,  even though the importance of angular and impact accelerat ions 

i s  recognized. 

e r a t ion  environments, and some of t h e i r  e f f e c t s  on the  psychophysiol- 

ogical  performance of human subjects.  

f l i g h t  simulation and astronaut accelerat ion t r a i n i n g  programs a re  

summarized. The paper concludes with 17 general  pr inciples  which de- 

s c r ibe  t h e  e f f e c t s  o f  high gravi ty  on man, and which evaluate some of 

t he  s ign i f i can t  problems on which fu r the r  research is needed. 

The early portion of t h i s  paper described the  accel- 

Later i n  t h e  paper recent space 

The physiological description of accelerat ion used i n  t h i s  paper 

i s  described i n  Chambers (1963)and i s  i l l u s t r a t e d  i n  Figure 1. 

PHYSIOLOGICAL TOLERAncE TO ACCELERATION STRESS 

Pbysiological tolerance i s  one of t h e  most important concepts i n  

accelerat ion research. It i s  defined as t h e  physiological a b i l i t y  t o  

sus t a in ,  endure, o r  withstand the accelerat ion stress. Many d i f f e ren t  

kinds of c r i t e r i a  are used t o  measure G tolerance.  These include M G  

abnormalit ies i n  rate or  wave form, cardiovascular response survival  

t i m e ,  chest  pain,  grayout, blackout,  and unconsciousness. 

Human tolerance t o  posi t ive C(+C 1 is  usual ly  indicated i n  terms of 

I f  t h e  subject  is unable t o  per- grayout, blackout,  or  unconsciousness. 

ceive objects  i n  h i s  per ipheral  f i e l d  of vis ion,  this per ipheral  v i s ion  

loss i s  c a l l e d  grayout (see Figure 2 ) .  I f  he fa i ls  t o  respond t o  an 

i l luminated c e n t r a l  l i g h t ,  it is ca l l ed  blackout. The next s tage i n  

seve r i ty  i s  unconsciousness. 

For negative G(-Gz), t h e  c r i t e r i a  a re  general ly:  severe v i s u a l  
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m a l k c t i o n s  such as extremely blurred v is ion ,  excessive pain i n  the  

eyes and head, excessive t e a r s ,  redout, and r e t i n a l  hemorrhage. 

For pos i t ive  t ransverse G (+Cx), the  c r i t e r i a  a r e  not  as d e f i n i t e .  

The symptoms include extreme chest pain,  extreme d i f f i c u l t y  i n  breathing,  

excessive pain,  o r  discomfort i n  t h e  ex t remi t ies ,  extreme fa t igue ,  v i sua l  

dimming o r  l o s s  of per iphera l  v i s ion ,  excessive b lur r ing  o r  d i f f i c u l t y  

i n  focusing, excessive t e a r i n g  of t h e  eyes,  and petechiae on the post- 

e r i o r  surface.  

For negative t ransverse G (4 1, t h e  symptoms a r e  usually: extreme 

pain i n  t h e  eyes and ex t remi t ies ,  v i s u a l  b lur r ing ,  tear ing ,  extreme d i f f i -  

cu l ty  i n  focusing and r e t i n a l  hemorrhage. 

During simple tumbling maneuvers when t h e  subject  i s  exposed t o  a 

constant s teady-state  accelerat ion,  a l l  of these  symptans-may be sham,  

s ince  during tumbling t h e  subject  cont inual ly  passes through the  +Gz, 

+Gx, -GZ, and -G vectors. 

i o l o g i c a l  tolerance problem i n  the  s c i e n t i f i c  l i t e r a t u r e ,  and t h e  reader 

is  re fer red  t o  these f o r  more exhaustive considerat ions of  t h e  tolerance 

problem (Eiband, 1959; Webb, 1961; Gauer and Zuidema, 1961). 

There are excel lent  reviews of t h e  phys- 

There a r e  many to le rance  curves in  t h e  published l i t e r a t u r e  which 

per ta in  t o  t h e  r e s u l t s  of s p e c i f i c  experiments. 

s e t  of physiological  tolerance curves which have been extrapolated f r o m  

approximately 20 experiments. 

portant  re la t ionships  f o r  magnitude of acce lera t ion  and duration time 

f o r  p o s i t i v e  acce lera t ion  (ez) , negative acce lera t ion  (-Gzl 3 t ransverse 

supine acce lera t ion  (+G ) , and t ransverse prone accelerat ion (-Gx). The 

f igure  represents  averages, not necessar i ly  maximum tolerance l e v e l s ,  

and shows t h a t  t h e  acce lera t ion  load which a subjec t  can s u s t a i n  for  W 

given durat ion is  higher  f o r  t ransverse supine (+Gx) accelerat ion than 

Figure 3 presents  a 

The f igure  shows sane of the most im- 



f o r  t h e  remainder of t h e  accelerat ion vectors .  The primary l imi t ing  

f a c t o r  f o r  pos i t ive  t ransverse accelerat ion i s  resp i ra t ion  d i f f i c u l -  

t ies and fa t igue .  

t h e  primary l imi t ing  factors  a re  v i s u a l  decrement and p e r i o r b i t a l  

pain. Pos i t ive  longi tudinal  acce lera t ion  (+GZ) can be endured a t  

lower l e v e l ;  and t h e  data  i n  t h i s  f igure  assume t h e  presence of a G- 

s u i t  t o  assist i n  maintaining blood flow i n  t h e  trunk and head areas .  

Visual decrements (v isua l  grayout and blackout) without necessar i ly  

t h e  presence of pain,  are t h e  primary l imi t ing  fac tors  f o r  t h i s  

accelerat ion load. 

sustained f o r  only short periods o f  t i m e ,  and f o r  only r e l a t i v e l y  low 

accelerat ion leve ls .  

severe cardiac damage may result f rm negative longi tudinal  acceler- 

a t ion.  

Transverse prone accelerat ion ( - G  ) i s  next ,  and 

Negative longi tudina l  accelerat ion ( - G z )  can be 

Excessive pa in  i n  t h e  head and eyes and possible  

Figure 4 summarizes the r e s u l t s  of k experiment i n  which a group 

of heal thy p i l o t s  attempted t o  sus ta in  r e l a t i v e l y  high +Gx, -Gx, and 

+G accelerat ion vectors  for  long periods of t i m e  using t h e  Ames re- 

s t r a i n t  system, a portable ,  adjustable  type designed f o r  a l l  th ree  

vectors  (Smedal, e t  a l ,  1961). 

p i l o t  with not only physiological G p ro tec t ion ,  but a l s o  with minimal 

r e s t r i c t i o n  f o r  performing operat ions,  providing r e s t r a i n t s  f o r  t h e  arms, 

feet and head so t h a t  these body members could be maintained secure,  y e t  

r e l a t i v e l y  f ree  t o  move, during exposure t o  G. The c r i t e r i a  f o r  these  

runs were: 

should be terminated because of cardiac or  resp i ra tory  problems, o r  ( b )  

t h e  p i l o t ' s  t racking performance became unsat isfactory,  as judged by a 

The system w a s  designed t o  provide t h e  

( a )  medical, e.g., t h e  medical o f f i c e r  decided t h a t  the  runs 
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performance monitor. The f igu re  presents  some unusually outstanding 

t h e - t o l e r a n c e  t o  accelerat ion centr i fuge runs along three d i f f e ren t  

accelerat ion vectors .  This pa r t i cu la r  f igure represents r e s u l t s  of 

prolonged high-G accelerat ion tests i n  which experienced p i l o t s  served 

as subjects .  They continuously performed p i lo t ing  tasks  i n  accel-  

e r a t ion  f i e l d s  during steady-state G exposures i n  which performance 

prof ic iency as wel l  as physiological tolerance were used as tolerance 

c r i t e r i a .  

In  Figure 5 maximum to l e rab le  accelerat ion p ro f i l e s  are presented. 

These. are t h e  results of record runs t o  date .  

PRIMARY STIMLTLUS VARIABLE3 

G-tolerance may be expressed as a function of at  l ea s t  f i v e  primary 

stimulus accelerat ion var iables ,  and a complex multidimensional graph 

would be required t o  show a l l  of t he  r e l a t ionsh ips ,  even i f  t h e  com- 

p l e t e  data  were avai lable .  These var iables  are as follows: 

( a )  The d i r ec t ion  of t h e  primary or  r e su l t an t  G force with respect 

t o  t h e  axes of  t h e  body; 

( b )  

( c )  

( d )  

( e )  

The rate of  onset and decline of G; 

The magnitude of peak G ;  

The duration of peak G ;  

The t o t a l  duration of accelerat ion frcm t i m e  of onset t o  

termination. 

There a re  many conditions which influence a human subject ' s  t o l e r -  

ance. Nine of  t hese  a re  as follows : 
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( a )  

( b )  

( c )  

The types of end points  used i n  determining tolerance;  

The types of G-protection devices and body r e s t r a i n t s  used 

The or ientat ion of t he  body with respect t o  the  direct ion of 

force appl icat ion,  and the body posture assumed within the  force f i e l d ;  

(d) Environmental conditions,  such as temperature, ambient pres- 

sure ,  and l i gh t ing ;  

( e )  Age of sub jec t ;  

( f )  Bnotional f ac to r s ,  such as f e a r  and anxiety,  confidence i n  

s e l f  and apparatus,  will ingness t o  t o l e r a t e  discomfort and pain; 

( g )  Motivational f ac to r s ,  such as competitive a t t i t u d e ,  des i r e  t o  

be se l ec t ed  f o r  a pa r t i cu la r  space p ro jec t ,  or  spec i f i c  pay, recognition 

o r  rewards; 

( h )  Previous acceleration t r a i n i n g  and accumulative e f f e c t s  ; 

(i)  Techniques of breathing, s t r a i n i n g ,  and muscular control .  

PERFORMANCE TOURANCE TO ACCELERATION STRESS 

In  addi t ion t o  t h e  physiological tolerance limits which def ine the  

end points  f o r  r e l i a b l e  functioning f o r  any p a r t i c u l a r  physiological 

system during exposure t o  accelerat ion stress, there  a re  a l s o  performance 

tolerance limits which define the  end points  f o r  r e l i a b l e  functioning of 

any p a r t i c u l a r  overt  behavior system during accelerat ion (Chambers and 

Nelson, 1961). The physiological and performance tolerance l i m i t s  may 

be funct ional ly  r e l a t ed ,  but they a re  not necessar i ly  t h e  same. 

formance tolerance l i m i t s  usually indicate  the G amplitude l e v e l  o r  t i m e  

during which a p i l o t  m a y  s a t i s f a c t o r i l y  perform a given task.  

spec i f i ca t ion  and development of perfsrmance tolerance maps vhich ahow 

Per- 

The 
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impairment as a function of physiologicdl accelerat ion stress a re  de- 

pendent upon the  iden t i f i ca t ion  and quant i f icat ion of performance e r ro r s  

so t h a t  t h e  amount of impairment of the pa r t i cu la r  human a b i l i t y  i n  

question may be indicated.  

Under conditions of moderate accelerat ion,  experienced p i l o t s  use 

t h e  motion and accelerat ion cues i n  performing t h e i r  tasks, and these  

cues,  along with reasonably high concentration and motivation, may enable 

p i l o t s  t o  perform as w e l l  under moderately high accelerat ion as under 

s t a t i c  (1 G) conditions.  

Under conditions of high g rav i ty ,  however, performance proficiency 

de te r io ra t e s  markedly. 

de t e r io ra t ion  generally r e f l e c t s  impairment of v i s ion ,  an i n a b i l i t y  t o  

maintain control  of t h e  movements of h i s  muscles s u f f i c i e n t l y  wel l  t o  

counteract t h e  e f f e c t s  of G on h i s  body members and/or control  devices. 

Results of one experiment i n  which endurance t i m e  f o r  continuously 

In  t h e  case of t ransverse accelerat ion,  t h i s  

performing a p i l o t i n g  t a s k  are shown i n  Fig. 6. 

r e l a t i v e  amounts of e r r o r  during exposures t o  +Gx, -Gx, and +G 

e ra t ions  and illustrates t h a t  d i f f e ren t  amounts of e r ro r  are associated 

with magnitude of G ,  as w e l l  as d i r ec t ion  of G. 

The figpre shows the  

accel- 

Figure 7 shows the  results of an experiment i n  which t h e  amount of 

performance decrement was s tudied as a function of t h e  magnitude of 

t r ansve r se  G.  

crement i n  performance. Decrement w a s  lower f o r  lower accelerat ion 

loads.  The degree of performance decrement which could be considered 

as being t h e  performance tolerance limits i s  somewhat a rb i t r a ry  i n  most 

cases.  

The f igu re  shows t h a t  at 15 Gx, t h e r e  w a s  a 78% de- 
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R E L A T I O N S H I P  BETWEEN P H Y S I O M G I C A L  TOLERANCE AND 

PERM)RMANCE TOLERANCE 

Physiological tolerance l i m i t s  by necessi ty  define cer ta in  perform- 

ance tolerance boundaries, s ince  t h e  p i l o t  who i s  not able  t o  sus ta in  

acce lera t ion  physiologically is unable t o  continue performing a task.  How- 

ever ,  t h e  pred ic t ion  of performance tolerances from physiological to le rances  

i s  extremely unrel iable .  Results of  our experiments t o  date  ind ica te  

t h a t  physiological  responses, such as M G ,  resp i ra t ion ,  and blood pre- 

ssure, are not necessar i ly  good predictors  of p i l o t  performance during 

acce lera t ion  stress. A n  example of t h i s  is  shown i n  Fig. 8,  i n  which 

physiological  and performance measures taken on a subject  during high 

G are compared. In  t h i s  example, performance impairment appeared 

suddenly and completely, whereas t h e  physiological decrement w a s  not  

not iceable  f r o m  t h e  recordings. S k i l l  decrement usual ly  occucs p r i o r  

t o  physiological  decrement. Here, f o r  example, i n  Fig. 8, EKG, pulse ,  

resp i ra t ion ,  blood pressure, t rack ing  ef f ic iency ,  p i t c h  e r r o r ,  heading 

e r r o r ,  r o l l  cont ro l ,  p i t c h  control ,  and yaw control  were measured. I n  

t h i s  p a r t i c u l a r  example, t racking ef f ic iency  w a s  calculated i n  per- 

centage u n i t s  based on accumulated t racking e r r o r  divided by t h e  

accumulated excursion of  the t a r g e t  display which t h e  p i l o t  w a s  monitor- 

ing.  P i tch  and r o l l  control  inputs  were made with a small penci l  con- 

t r o l l e r ,  and proficiency could range on a percentage s c a l e  f r o m  100% to- 

loo%, as derived from t h e  divis ion of t h e  ac tua l  control  output by t h e  

required output. This figure c l e a r l y  shows t h a t  t h e  t racking  ef f ic iency  

took a very sudden and marked. drop from near ly  90% t o  approximately 

-95% near  the  end of t h e  run. 

except f o r  a s l i g h t  change in resp i ra t ion .  This record is  one of t h e  

Very l i t t l e  physiological  change i s  shown 
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many instances which have emphasized the predict ive value of  performance 

scores f o r  medical monitoring purposes, and it i l l u s t r a t e s  t h e  d e t r i -  

mental e f f e c t s  of high sustained accelerat ion on psychmotor s k i l l  per- 

formance. 

It is important t o  note t h a t  i n  an experiment just completed, a 

study of 36 p i l o t s  exposed t o  a wide range of acceleration s t r e s s e s  f a i l e d  

t o  show any d e f i n i t e  co r re l a t ion  between oq-gen saturat ion l e v e l  i n  the  

blood and performance decrement. 

A descr ipt ion of t h e  physiological events which are associated with 

accelerat ion stress is  necessary at  t h i s  time. For the  purposes of t h i s  

paper,  t h e  discussion i s  l imited t o  only two types of acceleration 

vectors : 

These events a re  described i n  the  following two sections.  

pos i t i ve  accelerat ion (+G ) and transverse accelerat ion (+Gx). 

PHYSIOLOGIC& EFFEKYS OF POSITIVE ACCELERATION (+Cz) 

The physiological e f f e c t s  of accelerat ion a r e  largely dependent upon 

t h e  d i r ec t ion  of t h e  accelerat ion with respect t o  t h e  body. 

vector ,  t h e  obvious physiological e f f e c t s  are primaril.. r e t i n a l  and 

ce reb ra l ,  and mechanisms are due l a rge ly  t o  cardiovascular i,.sdequacy. 

In  t h e  +GZ 

During accelerat ion exposures which are of su f f i c i en t  r a t e  t o  prc- 

duce loss of v i s ion ,  t he re  i s  an immediate decrease i n  blood pressure at  

t h e  head l e v e l ,  a decrease i n  t h e  amount o f  blood in  the head, an in- 

crease i n  hea r t  r a t e ,  a decreaae i n  t h e  amplitude of the ar ter ia l  pulse 

at t h e  l e v e l  of  t h e  ear, a f a i l u r e  of  pe r iphe ra l  vis ion,  and eventual ly ,  

a l o s s  of  c e n t r a l  vis ion (blackout) .  For slow r a t e s  of accelerat ion 

(less than 1G per second),  a period of compensation may become e f f ec t ive  
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so t h a t  t he  f a l l  i n  a r t e r i a l  pressure i n  the  ca ro t id  sinuses may re- 

s u l t  i n  some recovery of blood pressure and ear pulse ,  due t o  t h e  

pressor  ref lexes  i n i t i a t e d  by t h e  f a l l  i n  arterial pressure.  

In  addi t ion t o  the above e f f e c t s ,  pooling of venous blood occurs 

i n  t h e  blood and splanchnic region. There i s  an increase i n  hydro- 

s t a t i c  pressure i n  t h e  abdomen. The diaphragm a l s o  descends. In  

sddi t ion,  t he re  i s  a loss  of  venous r e tu rn ,  which gives rise t o  a de- 

crease i n  cardiac output. With r a t e s  of onset of about l G per second, 

subjects  i n  the  seated posit ion and going t o  4 G may expect 89 much as 

25% decrease i n  cardiac output, 49% decrease i n  s t roke volume, and an 

increase i n  hear t  r a t e  of as much as 56%,  a mean a o r t i c  pressure increase 

of as much as 27%, and an increase i n  vascular r e s i s t ance  of as much as 

59%. 

O f  most i n t e r e s t ,  perhaps, a r e  t h e  hydrostat ic  e f f e c t s  on vis ion,  

and t h e  e f f e c t s  which manifest themselves at l eve l s  below those a f f ec t ing  

unconsciousness. The intraocular  pressure i s  approximately 20 mm Hg 

higher than the  in t r ace reb ra l  pressure.  

t h e  r e t i n a  f a i l s  before  f a i l u r e  of  t h e  cerebral  c i r cu la t ion .  Lambert 

(1945),using a special ly  designed p a i r  of suct ion goggles applied t o  the  

eyebal ls ,  found t h a t  the appl icat ion of  30 t o  40 mm Hg negative pressure 

t o  the  eyebal l ,  raises the blackout threshold.  

Consequently, blood supply t o  

Duane (195b) and others have i l l u s t r a t e d  t h a t  t he re  i s  a co r re l a t ion  

between v i sua l  change and change i n  t h e  fundus ocul i .  Associated with 

the  subject ive l o s s  of peripheral  v i s ion  is t h e  a r t e r i o l a r  pulsat ion,  

i . e . ,  recurrent exsanguination. 

perience of blackout i s  a r t e r i o l a r  exsanguination and collapse.  Assoc- 

i a t e d  with the  r e tu rn  of cen t r a l  and per ipheral  Vision is  the  r e tu rn  of 

Associated with the subject ive ex- 
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a r t e r i o l a r  pulsat ion and temporary venous dis tension.  

In  l a t e r  work (1963), he observed t h a t  where t h e  hydrostat ic  pres- 

sure w a s  such as t o  cause col lapse of t h e  a r t e r i o l a r  vessels during 

d i a s t o l e  and recovery, i n  sys to le  a pulsat ion of t h e  vessels may be 

observed which is  associated with t h e  grayout, o r  reduction of t h e  

v isua l  f i e l d  t o  approximately 1 5 O  i n  a l l  meridians. 

those subjects  i n  whom a phot ic  drive of the  EEG w a s  observable a t  r e s t ,  

loss of phot ic  dr ive could be demonstrated a t  grayout levels .  

I n  addi t ion,  i n  

The inner  r e t i n a l  layers  a re  sens i t ive  t o  hypoxia. It is theo- 

r i z e d  t h a t  t h e  r e t i n a l  a r t e r i o l a r  ischemia produced hypoxia of these  

layers .  The c r i t i c a l  s i t e  of hypoxia i s  believed t o  be t h e  junct ion of 

t h e  ganglion and b ipolar  c e l l s  i n  the  re t ina .  

While t h e  major p a r t  of t h e  cerebral  hypoxia t h a t  ensues under pos- 

i t i v e  accelerat ion i s  no doubt due t o  inadequacy of the blood flow, t h e r e  

i s  some evidence t h a t  prolonged pos i t ive  accelerat ion could produce 

marked a r t e r i a l  hypoxemia. Ar te r ia l  unsaturation develops during 

prolonged exposures t o  pos i t ive  (+GZ) acce lera t ion ,  despite an accom- 

panying increase i n  resp i ra tory  minute volume. For example, B a r r  

(1963a) found t h a t  a r t e r i a l  sa tura t ion  during a 2-minute exposure t o  

+5 G dropped from a mean of 96.2% t o  87.4% while t h e  alveolar oxygen 

tens ion  f e l l  t o  a mean of 58.0 mm Hg. 

Respirat ion r a t e  and t i d a l  volume increase and v i t a l  capaci ty  de- 

creases during exposure t o  pos i t ive  accelerat ion.  The decrease i n  v i t a l  

capaci ty  i s  due i n  p a r t  t o  a l imi ta t ion  i n  inha la t ion  imposed by down- 

ward pressure on t h e  thorax. Overall pulmonary eff ic iency is  lowered. 

In  a study by Barr (1963b), it was found t h a t  human subjects  exposed 

t o  +5 G f o r  1 minute (wearing G - s u i t s ) ,  had an i n i t i a l  apnea f o r  a few 
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seconds with onset of accelerat ion,  followed by a marked increase i n  

r e sp i r a to ry  rate and volume, pe r s i s t i ng  throughout t h e  accelerat ion 

and for  some time after the acceleration ceases. During exposures of 

+5 G 

20.8 l i ters  pe r  minute, and e f f ec t ive  alveolar  ven t i l a t ion  increased 

from 4.9 t o  9.6 l i ters per minute. 

increased by 8.0 m Hg and w a s  responsible f o r  t h e  m a o r  pa r t  of t h e  

accompanying decrement i n  end-t idal  Cog tension. 

creased f r o m  a pre-run value of 269 t o  410 m l  per  minute, whereas C02 

elimination increased from 216 t o  391 ml per minute, r e su l t i ng  i n  a 

change i n  the  respiratory exchange r a t i o  f r o m  0.80 t o  0.96. He r e l a t e s  

t h e  l a rge  a r t e r i a l  t o  end-tidal C02 difference t o  the  r e s u l t  of ven t i l -  

a t i on  of  an unperfused portion of the lungs,  equivalent t o  one-third 

of t h e  t o t a l  number of a lveol i .  

f o r  two minutes, expired minute volume increased from 8.6 t o  

Arterial t o  end-tidal cop difference 

Oxygen uptake in- 

Electrocardiography has been a maJor area of pos i t i ve  accelerat ion 

research. Pulse rate progressively increases with G. A t  t h e  lower 

accelerat ion l e v e l s ,  pulse r a t e  f o r  non-experienced subjects  i s  higher 

than t h a t  f o r  experienced subjects  (Fitzsimons, 1957). This difference 

disappears at  higher levels of G. Fitsimons reports  t h a t  t h e  r ise i n  

pulse r a t e  is produced by s t imulat ion of t h e  ca ro t id  sinus brought a- 

bout by t h e  f a l l  i n  blood pressure,  and a l s o  by an adrenal medullary 

response, brought about by apprehension. 

by t h e  f a c t  t h a t  t h e  increase begins before t h e  onset of  accelerat ion,  

while t h e  maximum drop i n  blood pressure is reached seve ra l  seconds 

after onset. 

This l a t t e r  a s p ' c t  i s  supported 

Major changes occur i n  the e l e c t r i c a l  axis.  These appear t o  be 

among t h e  primary changes. In  addi t ion,  t he re  are  some S-T segment and 
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some non-specific T-wave changes. They a r e  ind ica t ive  of cardiac 

s t r a i n  and a re  most l i k e l y  t o  occur 10  t o  20 seconds before visual  

disturbance. The P-R i n t e r v a l  shortens concomitantly with t h e  pulse 

r a t e .  

t h e  P-wave may not be dis t inguishable  from the S-T complex. 

times the re  are bur s t s  of cardiac arrhythmia, bradycardia, marked 

s inus arrhythmia, extrasystoles ,  and displacement of the pacemaker. 

I f  these conditions p e r s i s t ,  or  i f  G increases ,  unconsciousness from 

cerebral  hypoxia r e s u l t s .  

sciousness which can r e su l t .  One is associated with hypertension at 

the  hea r t  l e v e l ,  but inadequate tension at t h e  eye level .  The other  

is associated with f a i l u r e  of compensation, hypotension a t  hear t  l e v e l ,  

and syncope. Convulsions may occur next. Franks, e t  al (1945)found 

t h a t  convulsions and EEC changes occurred i n  52% of 230 subjects  and 

i n  40% of 591 tests producing unconsciousness. 

s l i g h t  colonic seizures  involving a l l  or some of t h e  extremities, face,  

and trunk. 

Under high pos i t i ve  G s t r e s s  and high pulse  r a t e  (lgO/min), 

Some- 

Actually,  t he re  are two types of uncon- 

There were usually 

PHYSIOMGICAL EFFECTS OF TRPNSVERSE ACCELERATION (+Gx) 

During exposure t o  t ransverse accelerat ion,  t h e  increase i n  hydro- 

s t a t i c  pressure is much l e s s  than for pos i t i ve  acceleration because of 

t h e  s h o r t e r  dis tance involved. During t ransverse accelerat ion,  t h e  

l imi t a t ions  a r e  l a rge ly  r e sp i r a to ry  i n  nature ,  although during ex- 

tremely high accelerat ion,  some hydrostat ic  e f f e c t s  a r e  great  enough 

i n  t h e  eye and b ra in  t o  be s ign i f i can t .  
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During +Gx, t h e r e  is an elevat ion of t h e  pos te r ior  ha l f  of t h e  

d i a p h r a g ,  a decrease i n  t h e  antero-posterior diameter of t h e  thorax,  

dimunition o f  lung area, and an increase i n  radiolucency i n  t h e  a r t e r i o r  

port ion of  t h e  lung (believed t o  be due t o  perfusion) .  

displaced pos te r ior ly .  Also, t h e  t rachea  i s  displaced pos te r ior ly .  

The hear t  i s  

The resp i ra tory  ra te  increases  almost l i n e a r l y  with accelerat ion.  

(See Fig. 9 )  

about 8 G .  (See Fig.  10) Tidal  volume appears t o  increase i n i t i a l l y ,  

but decreases with extremely high G .  

atory reserve volume and i n  t i d a l  volume, as wel l  as a decrease i n  

t o t a l  lung capacity and funct ional  res idua l  capacity. No s i g n i f i c a n t  

change occurs in  res idual  volume. V i t a l  capacity decreases as G in- 

creases ,  u n t i l  approximately 1 2  G ,  where t h e  v i t a l  capacity is essen- 

tially t h e  same as t i d a l  volume, thus ind ica t ion  a decrease i n  pulmonary 

reserve . 
capacity and t i d a l  volume would approach zero. These fac tors  all point  

t o  a marked interference i n  pulmonary vent i la t ion ,  and t h e  sever i ty  of 

t h i s  interference increases as G increases .  So f a r  as t h e  p i l o t  i s  

concerned, much e x t r a  work i s  required t o  maintain h i s  breathing re- 

quirements. 

Minute volume increases  i n i t i a l l y ,  then l e v e l s  of f  at 

There is a decrease i n  expir-  

I f  accelerat ion were t o  continue t o  get higher ,  both v i t a l  

I t  should be noted t h a t  there  i s  a l s o  an increase i n  resp i ra tory  

frequency, and an increase i n  hear t  ra te .  An example of t h i s  i s  shown 

i n  Fig. 11. This appears t o  be l i n e a r  t o  about 12 G ,  after which t h e  

subject  tends t o  hold h is  breath.  

Watson and Cherniak (1962), using pos i t ive  pressure breathing of 

2 1/2 t o  3 m Hg per  G ,  found t h a t  a 67% increase i n  to le rab le  durat ion 



-XXIV-15- 

of exposure t o  10 G t ransverse G could be produced. This study u t i l i z e d  

100% oxygen, r a t h e r  than normal breathing air .  

been found t o  increase duration time. 

Oxygen uptake i t s e l f  has 

It is believed t h a t  there  i s  an increase i n  0 uptake under trans- 2 

verse accelerat ion.  However, some inves t iga tors  bel ieve t h a t  t h e r e  i s  

a reduction i n  O2 consumption and i n  increase i n  C02 re tent ion during 

accelerat ion i n  the  face of an adequate oxygen s u p p l j  followed by a 

la rge  increase i n  O2 consumption immediately following accelerat ion.  

may be t h a t  t h e  reduction i n  O2 consumption m a y  represent  dimunition of 

t h e  arterial  oxygen content ,  due t o  pulmonary shunting and diminishing 

per iphera l  u t i l i z a t i o n ,  which r e s u l t s  i n  par t  from inadequate perfusion 

of port ions of  t h e  usual ly  perfused per iphera l  vascular  bed. 

I t  

There i s  a decrease i n  diffusion capacity. I t s  s ignif icance is not  

c lear .  

and some r e s u l t s  from a decrease i n  t h e  a rea  of functional a lveol i  i n  

contact with funct ional  c a p i l l a r i e s .  

Much of  it may be due t o  t h e  development of  pulmonaly edema, 

Arterial pressures  are increased under G accelerat ion.  A t  6 G 

negat ive pressures  can occur i n  t h e  vent ra l  region which begin 50 

approach t h e  threshold  f o r  rupture  of pulmonary parenchyma. 

Arterial oxygen desaturat ion occurs under t ransverse  acce lera t ion  

and d i f fus ion  capaci ty  i s  a l s o  reduced. 

e r a t i o n  Laboratory (Alexander, e t  al, 19641, it w a s  demonstrated t h a t  

following an i n i t i a l  r i s e ,  probably due t o  hypervent i la t ion,  t h e r e  is a 

rap id  and almost l i n e a r  fa l l  t o  a minimum of  about 81% at 10  Gx. 

Fig. 12) This minimum can be maintained f o r  a short  while. On cessat ion 

of  acce lera t ion ,  there  i s  a rapid climb t o  about 93% during t h e  f i r s t  30 

seconds, followed by a prolonged recovery. 

A t  t h e  Aviation Medical Accel- 

(See 

(See Fig. 13) Even at  6 G, 
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sa tu ra t ion  fa l l s  t o  a l i t t l e  over 85%. 

sa tu ra t ion  w a s  less, and t h e  r a t e  of desaturat ion is  slower. In 

another study using the  AMAL Human Centrifuge, Reed, e t  a1 (1964) 

measured arterial  oxygen sa tu ra t ion  a t  7,  8, 9 ,  and 10 G,. 

t h a t ,  using a i r  breathing, a drop of about 3 % i n  s a tu ra t ion  developed 

i n  about 10 seconds; a f t e r  approximately 80 seconds, t he  saturat ion 

w a s  near t h e  60 t o  70% level .  

Using 100% oxygen at 5 p s i ,  

He found 

Up t o  5 Gx t h e r e  i s  l i t t l e  cardiac output change i n  man. Stroke 

volume appears t o  hold constant,  at  least t o  5 Gx pulse rate has been 

found t o  vary some, however, and t h i s  i s  e s s e n t i a l  i n  t he  maintenance 

of cardiac output. I n  the G posi t ion,  t h e  r e l a t i v e  change in  hea r t  

rate appears t o  depend upon the  posi t ion of t he  ca ro t id  baroreceptors 

i n  r e l a t i o n  t o  the  posi t ion of t h e  trunk. 

a l t e r a t i o n  produced by acceleration on the perfusion pressures i n  t h e  

ca ro t id  arteries. 

This is presumably due t o  

Lindberg (1962) observed increases in  mean a o r t i c  pressure,  and in  

r i g h t  arterial  pressure.  

Petechial  hemorrhage i s  a l s o  one of t he  manifestations of hydro- 

s t a t i c  e f f e c t s .  There may be some minor changes i n  P-wave, deviation 

of  t h e  e l e c t r i c a l  axis  t o  t h e  r i g h t ,  low voltage R 6 T i n  the  chest  

l eads ,  and an enlargement of S and Q. These may be in t e rp re t ed  as in-  

dicat ing an increased pulmonary a r t e ry  pressure with high ven t r i cu la r  

and aur i cu la r  preponderance, r e su l t i ng  from compression of t ho rac i c  

contents and a s h i f t  i n  t h e  anatomical posi t ion of t he  hear t .  

G -PRO'TECTI ON 

In  addition t o  t h e  concepts of physiological and perfoxmance G 



tolerance,  an important concept i s  t h a t  of G-protection. 

kinds of  G-p-otection, including form-fit ted contour couches, net  couehes, 

G-suits, water s u i t s ,  a l a rge  va r i e ty  of s t r a p s ,  r e s t r a i n t s ,  bindings,  

and forms. 

There a re  many 

The standard type of G-protection for posi t ive (+GZ) accelerat ion 

As G increases ,  t h e  suit in f l a t e s  around the  i s  t h e  G-suit (Fig.  14). 

legs  and t o r s o ,  and the  r e su l t i ng  pressure thereby assists i n  maintaining 

t h e  blood i n  the  head region, thus a s s i s t i n g  the  p i l o t  in maintaining 

v i s ion  and consciousness. 

accelerat ion (+G 1, it does not provide protect ion from t ransverse 

accelerat ions (+Gx and -Gx). 

used i n  Project  Mercury, and they are planned f o r  Project Gemini and 

Project  Apollo, consequently, t he re  i s  a major i n t e r e s t  in protect ing 

p i l o t s  against t h e  e f f e c t s  of t ransverse supine (6 ) accelerations.  

The G-protection system which is receiving most intensive study 

An example of 

Whereas t h i s  system is helpful for p o s i t i v e  

Transverse supine accelerations have been 

at t h e  present t ime i s  t h e  form-fit ted contour couch. 

t h i s  couch, as developed through cooperative e f f o r t s  between t h e  AMAL 

and t h e  NASA is  shown i n  Fig. 15. This couch was developed f o r  enduring 

high +G, accelerat ion forces.  

t h i s  couch and at , h i s  r i g h t  hand posi t ion the re  i s  a small s t i c k  which 

is used t o  respond t o  per ipheral  l i g h t s  during an accelerat ion exposure. 

Using this couch, one subject  w a s  able t o  t o l e r a t e  a 40-second centr i fuge 

run which kept him at a peak of +25 G 

The subject  wears a f l i g h t  su i t  when i n  

f o r  f i v e  seconds. 

This p a r t i c u l a r  couch, which w a s  designed f o r  maximum transverse G, 

is  not p r a c t i c a l  f o r  a c t u a l  f l i g h t  operat ional  use. During t h e  past  

four  years ,  AMAL working closely with NASA, has been instrumental  i n  

developing and t e s t i n g  a va r i e ty  of  contour couches which could be used 
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f o r  operat ional  use. 

Each couch i s  individual ly  molded f o r  a spec i f ied  person. The one at  

t h e  far l e f t  w a s  developed i n  cooperation with t h e  NASA High Speed 

Fl ight  Center at Edwards A i r  Force Base, Cal i fornia ,  and w a s  found t o  

be s a t i s f a c t o r y  f o r  accelerat ion loads extending t o  +15 Gx during which 

time t h e  p i l o t  w a s  required t o  f l y  complex two-stage booster-orbi ta l  

missions. The second couch w a s  a design developed f o r  t h e  Mercury 

Astronauts and t h i s  par t icu lar  couch f o r  Astronaut Carpenter, per- 

mit ted accelerat ion runs t o  +14 G . Some of t h e  astronauts  who were 

f i t t e d  t o  these couches achieved runs t o  19 Gx. 

developed i n  cooperation with NASA Langley Research Center. 

A family of these couches i n  shown i n  Fig. 16. 

These couches were 

In t h e  center  i s  a couch developed i n  cooperation with the NASA 

Ames Research Center. The primary fea ture  of t h i s  couch w a s  t h e  t h e  

f e e t  could b e  freed so 8s t o  allow t h e  p i l o t  t o  use t o e  pedals. 

have successful ly  used couches of  t h i s  type t o  as high as +14 G 

out los ing  cont ro l  of re la t ive ly  cmplex  p i l o t i n g  tasks .  The four th  

couch represents  a model which w a s  developed f o r  permit t ing t h e  use of 

t h e  Mercury full-pressure s u i t s .  This model of couch w a s  used in  most 

of t h e  centr i fuge accelerat ion t r a i n i n g  pro jec ts  f o r  t h e  Mercury Astro- 

nauts. 

Research Center and t h e  McDonnell Company. The last couch, represents  

the  f i n a l  design used in  some of  t h e  centr i fuge t r a i n i n g  ‘programs f o r  

t h e  Mercury as t ronauts ,  showing slight addi t ions of an i n m r - l i n e r  and 

s i i g h t l y  modified head support. This couch design w a s  used i n  t h e  

ear ly  Mercury f l i g h t s ,  and has been found e f f e c t i v e  f o r  t o l e r a t i n g  

accelerat ion loads up t o  1 4  G without los ing  cont ro l  of  a r e l a t i v e l y  

complex reent ry  t a s k .  

P i l o t s  

with- 

These couches were developed i n  cooperation with NASA Langley 

Comparative tes t  data on t h e  major G-protection 



systems a re  shown i n  Fig.  17. 

A f i n a l  approach t o  the  G-protection problem is the use of pharma- 

cological  agents.  

t h i s  approach. 

See Figure 18, which summarizes an experiment using 

DYNAMIC FLIGHT SIMULATION 

Many of the  physiological and performance problems expected t o  be 

encountered i n  f l i g h t  may be s tudied by means of  simulation techniques. 

By using centr igues,  rocket bracks,  and other acceleration devices,  it 

is possible  t o  proauce some of  t h e  accelerat ion conditions of real 

f l i g h t .  Unconstrained motion with a i r c r a f t  and spacecraft  involves 

s i x  degrees of  freedom which may be conveniently expressed i n  terms of 

s i x  components, t h r e e  of which a re  l i n e a r  accelerat ions and t h r e e  of 

which a re  orthogonal angular accelerat ions.  For any given a i r c r a f t  or  

spacecraf t ,  some of  these components are  more important than o the r s ,  

and t h e  ways  i n  which they a re  combined determine t h e  complexity of  

t h e  p i l o t ' s  accelerat ion environment. It i s  possible  t o  express these 

l i n e a r  and angular accelerat ions i n  terms of  t he  amplitude, d i r ec t ion ,  

rates of onset and decl ine,  durat ion,  and pa t t e rn  of acceleration com- 

ponents, using the accelerat ion nomenclature which has been described 

i n  Chambers (1963). This permits a comprehensive description of t he  

accelerat ion environment with respect  t o  t h e  human p i l o t ,  and maw as- 

pects  of t h e  accelerat ion environment can be  simulated on t h e  human cen- 

t r i fuge.  

There are a l s o  7 otbers  i n  the  world. 

Table 1 summarizes t h e  8 human centr i fuges i n  the United S ta t e s .  
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A schematic diagram of t h e  AMAL Human Centrifuge and some of i t s  

associated computer equipment is shown i n  Fig. 19. This centr i fuge,  

which has a radius  arm of 50 f e e t ,  has a 10 by 6 foot  oblate  spheroid 

gondola mounted a t  t h e  end of t h e  arm. The gondola i s  mounted within 

t h e  double gimbal system which can continuously pos i t ion  a p i l o t  with- 

i n  t h e  gondola with respect t o  t h e  d i rec t ion  of any resu l tan t  accel- 

e ra t ion  vector  producing r a d i a l  accelerat ions up t o  40 C. 

accelerat ions can reach 10 radians/sec2 and angular v e l o c i t i e s  can 

reach 2.8 radians/sec . 
t r o l ,  it is  poss ib le  t o  simulate t h e  t h r e e  l i n e a r  accelerat ion com- 

ponents of f l i g h t  continuously and some of t h e  angular accelerat ions;  

however, t h e  angular accelerat ions of t h e  centr i fuge with only three  de- 

grees of  freedom of control  cannot simulate a l l  of t h e  possible  f l i g h t  

accelerat ions.  

The angular 

2 Given t h i s  power capabi l i ty  and t h e  proper con- 

When t h e  responses of t h e  p i l o t  are included within t h e  dr iving mech- 

a n i s m  of  t h e  accelerat ion device so t h a t  the  accelerat ions he receives  

from moment t o  moment vary as a function of h i s  behavior, an i n t e r e s t i n g  

type of in te rac t ion  e f f e c t  occurs, s ince  the  p i l o t ' s  behavior a l s o  var ies  

as a function of t h e  aczelerat ion he experiences. 

device, including a Mercury astronaut  i n  h i s  pressure s u i t ,  i s  shown 

i n  Fig. 20. A f t e r  t h e  astronaut en ters  t h e  cent r i fuge ,  t h e  hatch i s  

closed,  and t h e  atmospheric pressure may be regulated i n  order  t o  s i m -  

u l a t e  some of t h e  environmental conditions which may be encountered during 

normal and emergency f l i g h t .  

A photograph of t h i s  

An astronaut ,  i n  h i s  cockpit within the  centr i fuge gondola, i s  shown 

i n  Fig. 21. 

wearing a f l i g h t  s u i t ,  ra ther  than a pressure s u i t ,  and h i s  head is re- 

s t r a i n e d ) .  

(Figure 22 shows a similar view, except t h e  astronaut  i s  
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The p i l o t  within the  gondola of t h e  centr i fuge i s  provided with 

an instrument display panel,  a control  device,  and other p i l o t i n g  

equipment, as may be required.  

i n  response t o  information presented on theinstrument  panel and cues 

which he receives during t h e  accelerat ion.  The analog computers a re  

used t o  close t h e  loop between the p i l o t ,  h i s  displays,  h i s  controls ,  

and the  centr i fuge accelerat ions.  Thus, t h e  control  movements which 

the  p i l o t  makes are converted i n t o  e l e c t r i c a l  s ignals  and f ed  i n t o  the  

analog computer, which continuously generates t h e  f l i g h t  problem and 

provides solut ions which r e s u l t  i n  output s ignals .  Some of  t he  s igna l  

outputs are  transformed by a coordinate conversion system i n t o  approp- 

r i a t e  centr i fuge control  s ignals  which regulate  the power voltages t o  

t h e  arm and gimbal system of the  gondola. Simultaneously, t h e  other  

s igna l  outputs a re  fed t o  the  p i l o t ' s  instruments. 

The p i l o t  operates h i s  control  devices 

The pilot-centrifuge-computer system described above cons i s t s  

bas i ca l ly  of two closed-loop systems: one connecting the p i l o t ' s  

con t ro l  responses with the  dr iving system of t h e  centrifuge, and t h e  

o the r  connecting t h e  p i l o t ' s  control  responses with t h e  dr iving me- 

chanisms of t h e  indicators  on the  p i l o t ' s  instrument panel. 

e t  a l ,  1959; Chambers and Doerfel, 1959; Chambers, 1962a.l 

"his procedure has been used i n  a number of projects ,  such as the  

(Hardy, 

X-15,  Mercury, a number of basic  research s tud ie s ,  and X-20. 

During a t y p i c a l  simulation program on t h e  AMAL centr i fuge,  t he re  

are from 3 t o  9 duty s t a t i o n s  at which various types of recordings are 

taken. These recordings include psychological,  performance, medical 

and engineering data .  Sometimes, a l a rge  analog computer system records 
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performance e r r o r  as a function of t h e  programmed t a s k  and may, if 

desired,  convert the  analog scores t o  integrated e r r o r  scores o r  t o  

d i g i t a l  readouts on IBM cards. Another computer system computes 

means and v a r i a b i l i t y  f o r  each run as the  run proceeds, thereby pro- 

viding de ta i led  in- l ine scoring as each run progresses. I n  addi t ion,  

there  a re  severa l  addi t ional  d a t a  processing systems ava i lab le  f o r  

spec ia l  purpose analysis  such as  a 14-channel magnetic tape  recorder. 

In- l ine da ta  recording and data  processing i s  provided by feeding t h e  

responses through a s m a l l  analog computer system which simultaneously 

y ie lds  individual  means and standard deviat ions of t h e  subjec t ' s  per- 

formance on severa l  t a s k  components. 

I f  programmed appropriately,  t h e  human centr i fuge may be used as a 

dynamic simulation device i n  which physiology and performsnce of p i l o t s ,  

and t h e  behavior and effect iveness  of cockpit instruments, may be s tudied  

and evaluated. If programmed t o  simulate s p e c i f i c  types of aerospace 

vehicles during d e f i n i t e  portions of f l i g h t  maneuvers, t h e  human cen- 

t r i f u g e  may serve as a very useful  t o o l  f o r  ident i fying and inves t iga t ing  

some of t h e  human fac tors  problems associated with a wide var ie ty  of  t h e  

accelerat ion aspects of f l i g h t .  The e f f e c t s  of accelerat ion on p i l o t  

physiology, p i l o t  performance and p i l o t  a b i l i t y  t o  use s p e c i f i c  cont ro ls ,  

d i sp lays ,  and escape equipment may be invest igated.  

centr i fuge i s  instrumented with appropriate environmental conditions 

such as atmospheric pressure,  pressure s u i t ,  oxygen and other  gaseous 

condi t ions,  and computer control  of t h e  behavior of both centr i fuge and 

t h e  panel instrument, t h e  centr i fuge 'serves  as a very usefu l  t o o l  f o r  

studying t h e  e f f e c t s  of  combinations of conditions which a p i l o t  may expect 

t o  encounter during any given p a r t i c u l a r  accelerat ion phase of  h i s  f l i g h t .  

In  addi t ion,  i f  t h e  

' 
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Consequently, t h e  centr i fuge m a y  serve as a very e f fec t ive  t o o l  f o r  

studying t h e  integrated performance of t h e  p i l o t  and many se lec ted  

aspects  of cockpi t ,  d i sp lays ,  cont ro ls ,  and environmental conditions. 

The in te rac t ion  e f f e c t s  m a y  serve as convenient indications of  cm-  

p l e t e  man-machine systems performance. F ina l ly ,  t h e  human centr i fuge 

i s  an extremely usefu l  t r a i n i n g  device f o r  accelerat ion aspects  of 

complex f l i g h t  missions. 

ASTRONAUT TRAINING 

The AMAL H u m a n  Centrifuge has been found t o  be a very usefu l  de- 

Since 1958 it has been one of t h e  m a o r  v ice  f o r  as t ronaut  t ra in ing .  

t r a i n i n g  devices f o r  preparing t h e  Mercury Astronauts f o r  t h e  accelera- 

t i o n  phases of t h e i r  suborb i ta l  and o r b i t a l  space f l i g h t s .  

Mercury-type instrument panel ,  Mercury-type side-arm cont ro l le r ,  com- 

p l e t e  environmental cont ro l  system, and remotely-controlled c e n t r i f i g e  

dr ive  system permitted extensive t r a i n i n g  on a wide var ie ty  of  p i l o t i n g  

t a s k s  and emergency conditions during exposure t o  t h e  various accel- 

e ra t ion  p r o f i l e s  f o r  Redstone, Atlas, and abort maneuvers. The in- 

strument panel ,  shown i n  Fig. 23 was used i n  a var ie ty  of w a y s  t o  acquaint 

t h e  astronaut  with instrument malfunctioning, v i sua l  perception, changes 

during acce lera t ion ,  f l i g h t  problems, and t h e  operation of h i s  t e l e l i g h t s ,  

knobs, and handles. The associat ion of te lepanel  indicator  l i g h t s  with 

acce lera t ion  leve ls  and capsule events cons t i tu ted  a major t r a i n i n g  

e f f o r t ,  as may be seen i n  Fig. 24,  t h e  accelerat ion prof i le  and i ts  

associated events cons t i tu ted  a complex sequence of events. 

The a c t i v e  
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During t h e  course of f ive  t r a i n i n g  programs a t  t h i s  f a c i l i t y ,  

t h e  ast ronauts  received prac t ice  i n  s t r a i n i n g  in  order  t o  maintain 

good v is ion  and physiological functioning under high G loads, and i n  

developing breathing and speaking techniques during high G launch, 

reent ry ,  and abort s t ress .  Experience i n  tumbling and o s c i l l a t i o n s  

during r e l a t i v e l y  high G exposures w a s  a l s o  provided. The astronauts  

were given extensive pract ice  i n  control l ing t h e i r  simulated vehicles  

during reent ry  and other phases of t h e i r  simulated f l i g h t s .  They 

became s k i l l e d  i n  t h e  operation of  t h e i r  environmental control  systems 

and capsule communication procedures during accelerat ion exposure. 

Simultaneously, extensive physiological  monitoring and performance pro- 

vided continuous information on astronaut  endurance and p i l o t i n g  s k i l l .  

Figure 25 shows an example of a t y p i c a l  Redstone accelerat ion p r o f i l e  

during which time t h e  a b i l i t y  of  t h e  astronauts  t o  t r a c k  i n  p i tch  and 

yaw dimensions was  monitored. The f igure  shows t h a t  there  w a s  very 

l i t t l e  e f f e c t  of t h e  accelerat ion on t h e i r  t racking  s k i l l  during these  

p a r t i c u l a r  runs. 

Complete mission simulations were presented during which e a r l y  

morning s u i t i n g ,  psychiatr ic  t e s t i n g ,  waiting i n  t h e  gondola, launch, 

o r b i t ,  reen t ry ,  recovery, escape, post-f l ight  t e s t i n g ,  and debrief ing 

were provided on a real-time basis .  

physiological  and psychological conditioning and man-machine evaluat ions 

along real-time s c a l e  prof i les .  An addi t iona l  advantage of t h i s  type 

of t r a i n i n g  w a s  t h a t  the ast ronauts  were able  t o  experience t h e  m a n y  

s u b t l e  and e lus ive  interact ions which occur between t h e  physiological ,  

psychological, and engineering s t r e s s  var iables .  Evaluations of t h e  AMAL 

centr i fuge as a t r a i n i n g  device have been very favorable (Slayton, 1961; 

This type of simulation presented 
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Glenn, 1961, 1962; Shepard, 1961; Grissom, 1961; Voas, 1961a; Carpenter, 

1962 1. 

Similar  procedures have been used i n  t r a in ing  astronauts i n  support 

of Project  Gemini, Project  Apollo and Project  X-20 ( ~ y n a s o a r )  . 
summarizes a t y p i c a l  Gemini p r o f i l e  and t h e  associated physiological 

e f f ec t s  of t h i s  on a Gemini astronaut 

s en t s  an example of  t h e  i n s t a l l a t i o n  within the  centrifuge as it w a s  

used i n  t e s t i n g  astronauts  on some of  t h e  high accelerations which were 

ant ic ipated during design s tudies  i n  support of  Project  Apollo. 

Fig. 29) 

Figure 26 

(See Fig. 27) Figure 28  pre- 

(See 

A summary of t h e  centr i fuge programs which have been conducted on 

t h e  AMAt centr i fuge i n  support of National space projects  s ince  t h e  com- 

p l e t ion  of Project  Mercury is presented i n  Table 11. The t a b l e  suggests 

t h a t  t h e  techniques of centr i fuge simulation of  space f l i g h t  i n  order 

t o  study t h e  e f f e c t s  of accelerat ion,  and ' in  order t o  t r a i n  ast ronauts ,  

are being used t o  obtain accelerat ion data i n  a l l  of our National space 

p ro jec t s .  

Increments i n  performance proficiency i n  high G environments occur 

as a function of p rac t i ce .  Pract ice  r e s u l t s  i n  physiological adaptation 

and conditioning, as w e l l  as learning t o  make performance compensations 

fo r  t h e  accelerat ion disturbances.  

by: (1) Acccmmodating t o  t h e  sensations induced by G ;  (2)  Learning 

t o  resist t h e  e f f e c t s  of G through t h e  use of proper s t r a in ing  and hreath- 

i ng  techniques; (3) 

changed muscular and sensory capac i t i e s  induced by t h e  accelerat ion,  and 

( 4 )  

t h e  t a s k  simultaneously. 

The p i l o t  improves his  performance 

Learning o r  re learning the  task i n  the context of 

Learning t o  execute the  physiological and performance aspects  of 
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VIS1 ON 

Visual disturbances occur during exposure t o  accelerat ion stress. 

During pos i t ive  accelerat ion,  these disturbances r e s u l t  pr imari ly  from 

ischemia, although some mechanical d i s t o r t i o n  of t h e  eye may a l s o  occur. 

Generally, a period of grayout occurs before  blackout. 

character ized by general dimming and b lur r ing ,  and t o t a l  v i sua l  loss 

occurs approximately one G un i t  above grayout. 

l a t ionships  among t h e  amplitude, durat ion,  r a t e  of onset of pos i t ive  

acce lera t ion ,  time t o  grayout, and unconsciousness a r e  shown i n  Figure 

30. 

Grayout is 

Some of t h e  major re- 

When t h e  accelerat ion i s  t ransverse,  t h e r e  i s  much less v isua l  de- 

crement. 

apparent loss of per ipheral  v i s ion ,  and some d i f f i c u l t y  i n  focusing the  

eyes. 

some pain may be experienced, and small petechiae may occur on the  lower 

surface of t h e  eye l ids .  

f o r  accelerat ions as high as -15 Gx. 

verse accelerat ions appears t o  be largely a mechanical problem, due 

p a r t i a l l y  t o  mechanical pressures on t h e  eyes and t h e  accumulation of 

t e a r s .  However, i n  addition t o  amplitude and d i rec t ion  of accelerat ion,  

G duration i s  a l s o  a major importance. Endurance time t o  t ransverse 

accelerat ion is  la rge ly  dependent upon t h e  type of G-protection which is 

provided t o  t h e  p i l o t .  Using t h e  AMAL centr i fuge,  it has been possible  

t o  achieve endurance record runs f o r  t ransverse accelerat ion of 127 

seconds a t  +14 G,, and 71 seconds at -10 Gx. 

possible  la rge ly  because of a G-protection system developed by Smedal, 

A t  l eve ls  between 6 and 12 +Gx, t h e r e  may be some t e a r i n g ,  

For -Gx, at these l e v e l s ,  vis ion may be temporarily impaired, 

However, no i n t e r n a l  damage has been reported 

The problem of seeing under t rans-  

These runs were made 
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e t  a1 (1960) and by t h e  extremely high motivation demonstrated by the  p i l o t s  

who performed these runs. 

t racking display wel l  enough t o  pe r fom s a t i s f a c t o r i l y  throughout these runs. 

Moreover, the p i l o t s  were able t o  see a cmplex 

The p i l o t ' s  a b i l i t y  t o  read instruments is influenced by accelerat ion.  

However, a given As t h e  magnitude of G increases ,  v i sua l  acui ty  decreases. 

l e v e l  of v i s u a l  acui ty  may be maintained by increasing the s i z e  of t h e  t a r g e t  

or by increasing the  amount of luminance. 

due t o  G i s  not as great  85 it is f o r  the same G at lower l e v e l s  of luminance. 

I n  most accelerat ion s i t u a t i o n s ,  it is  important t o  know the  amount of con- 

t r a s t  required by t h e  p i l o t  i n  order t o  see a t  any p a r t i c u l a r  accelerat ion 

l e v e l ,  because as accelerat ion increases ,  t h e  amount of c o n t r a s t  required 

a l s o  increases .  

A t  h igh luminance, t h e  impariment 

A t  a recent study conducted a t  AMAL i n  cooperation with t h e  Cornel1 

Aeronautical Laboratories, it was demonstrated t h a t  t h e  minimally accept- 

able ( threshold)  cont ras t  was grea ter  fo r  pos i t ive  accelerat ion than f o r  

t ransverse accelerat ion.  Chambers, Kerr, Augerson, Morvay (1962) I n  this 

p a r t i c u l a r  experiment, v i sua l  br ightness  discr iminat ion was s tudied at f i v e  

leve ls  of t ransverse accelerat ion.  I n  t h i s  s t u w ,  the  subject i n  t h e  cent r i -  

fuge viewed a c i r c u l a r  t e s t  patch. Each centr i fuge t e s t  run provided approx- 

imately 1 5  responses, each of which w a s  at peak 0 fo r  90 seconds. 

heal thy subjec ts  with 20/20 vis ion ,  br ightness  discrimination thresholds were 

determined at t ransverse accelerat ion leve ls  of 1, 2 ,  3, 5 ,  and 7 Gx. 

a t ions  were made a t  each G l e v e l  with background luminance of  .03, .29, 2.9, 

and 31.2 foot-lamberts. Figure 31 shows t h e  obtained relat ionships  between 

br ightness  discr iminat ion threshold and background luminance f o r  each 

of each of t h e  f i v e  l e v e l s  of t ransverse accelerat ion.  This f igure  shows 

Using s i x  

Determin- 
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t h a t  fo r  each of t h e  five t ransverse acceleration conditions t h e  v i sua l  

contrast  requirements increased as t he  background luminance decreased. 

For any given background luminance l e v e l ,  t h e  higher accelerat ion l eve l s  

required more brightness contrast .  

G accelerat ions.  

Figure 32 shows s imi l a r  data  f o r  

POSITIVE PRESSURE BREATHING OF 100% O2 

Amstrong (1959) and Watson and Cherniak (1961) have suggested t h a t  

providing a p i l o t  with posi t ive pressure breathing of 100% oxygen dur- 

ing accelerat ion s t r e s s ,  e spec ia l ly  sustained t ransverse accelerat ion,  

increases endurance time. 

increase i n  endurance t i m e  f o r  subjects  exposed t o  +10 Gx when pos i t i ve  

pressure breathing of 100% oxygen was provided. Using the  same v i sua l  

brightness discrimination apparatus as described i n  the  above sect ion,  

an experiment was conducted t o  determine whether posi t ive pressure 

breathing of 100% oxygen would f a c i l i t a t e  brightness discrimination 

during steady-state accelerations.  The subjects  operated a pressure 

breathing oxygen regulator  manual4 so as t o  provide 0.7 inches of 

mercury per  t ransverse G on the  centrifuge.  The subjects  performed 

under th ree  breathing conditions: 

and 100% oxygen under posi t ive pressure.  

of .03 foot-lamberts, the subjects  were required t o  r e p e t i t i v e l y  operate 

a switch t o  maintain the t a r g e t  a t  t he  minimally discriminable br ight-  

ness contrast  l eve l .  The results are shown i n  Fig. 33. The contrast  

required f o r  discrimination appeared t o  be t h e  same f o r  both the  100% 

oxygen and 100% oxygen plus  pos i t i ve  pressure breathing. 

Watson and Cherniak (1961) have reported a 67% 

breathing normal air, 100% oxygen, 

Given a backgrond luminance 

Both of  t hese  
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conditions were superior  t o  the normal breathing a i r  condition. 

i n t e re s t ing  t o  note t h a t  as accelerat ion increased, t he  percentage of 

subjects  report ing bene f i c i a l  e f f e c t s  f r m  t h e  pos i t i ve  pressure breath- 

ing of 100% oxygen increased, as compared with the  other conditions.  

(The d e t a i l s  of t h i s  study a re  reported by Chambers, 1962). 

It i s  

A s i m i l a r  s tudy w a s  conducted on test  p i l o t s  a t  much higher  accel-  

e r a t ion  loads,  using peak accelerat ion centr i fuge runs of 8,  10 and 12 G's. 

The p i l o t s  were volunteers from t h e  USAF Aerospace P i l o t ' s  School at 

Edwards A i r  Force Base .  The p i l o t s  performed a Mercury type reentry 

t a s k ,  with t h e  centr i fuge a t  a steady-state accelerat ion l e v e l  f o r  two 

minutes under each breathing condition. 

t h i s  experiment i s  shown i n  Figure 34. 

performance under conditions of pos i t i ve  pressure breathing of 100% 

oxygen w a s  superior  t o  normal atmospheric breathing of 100% owgen. 

6 ,  8, and 10 Gx,  however, no differences were observed. 

t h e  p i l o t s  reported t h a t  pos i t i ve  pressure breathing of 100% oxygen w a s  

superior t o  t h e  condition of normal breathing of  100% oxygen i n  terms 

of breathing ease and general  comfort (Chambers, et al, 1962). 

The centr i fuge i n s t a l l a t i o n  f o r  

A t  +12 Gx, t h e  data  showed t h a t  

A t  

Subject ively,  

ORIENTATION AND VESTIBULAR FUNCTION 

For providing t h e  sensations and perceptions necessary f o r  main- 

t a in ing  continuous posi t ion o r i en ta t ion  and motion or ientat ion,  t h e  human 

p i l o t  has t h r e e  primary systems of sensory input:  

( b )  

( c )  

( a )  the  visual  system, 

t h e  l abyr in th ine  system (vest ibular  apparatus of the inner ear ) ,  and 

t h e  extralabyrinthine system (per ipheral  pressure,  muscle, and posture 
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senses) .  A l l  th ree  systems respond t o  s t imul i  associated wit;, l i n e a r  and 

angular accelerat ion.  

The ves t ibu lar  ( o r  labyrinthine)  system has two d i s t i n c t l y  d i f fe ren t  

or ien ta t ion  functions: ( a )  one concerned with sensing t h e  pos i t ion  of 

t h e  head, and ( b )  

The former i s  mediated primarily by t h e  o t o l i t h  organs, and the  l a t t e r  

pr imari ly  by the  c r i s t a  ampullares and associated cupula of t h e  semicircular  

canals .  

one concerned with sensing changes i n  t h e  rate of motion. 

Unusual head and body movements which a re  not normally encountered i n  

locomotion provide i l l u s i o n s  and d isor ien t ing  e f f e c t s .  

movements consis t  of :  ( a )  prolonged angular accelerat ion,  ( b )  angular 

accelerat ion followed by a constant ve loc i ty  rat'her than a decelerat ion,  

and ( c )  s t imulat ion which produces excessive Coriol is  accelerat ions i n  t h e  

semicircular  canal system. 

Examples of such 

For s e n s i t i v i t y  t o  l i n e a r  acce lera t ion ,  it i s  theorized t h a t  t h e  o t o l i t h s  

respond t o  the  d i f f e r e n t i a l  p u l l  of gravi ty  upon them. The o t o l i t h s  within 

t h e  i t r i c l e  are  pr imari ly  responsible f o r  the  s t a t i c  pos i t ion  sense. 

e f f e c t i v e  stimulus i s  the  pul l  of grav i ty ,  t h e  sensory c e l l s  being d i f fe ren t -  

i a l l y  s t imulated i n  d i f fe ren t  posi t ions.  

The 

There a re  a number of i l lus ions  which a r e  functions of c e r t a i n  types of 

accelerat ion exposures. I l lus ions  may befined as f a l s e  o r  incor rec t  perception 

of one's pos i t ion  and motion. An example of an i l l u s i o n  was described by 

Astronaut John Glenn i n  h i s  Friendship VI1 Mercury Capsule during h i s  e a r t h -  

o r b i t a l  space f l i g h t .  When the sus ta iner  engine cutoff  occurred and accelera- 

t i o n  suddenly dropped t o  zero, he experienced a sensat ion of being tumbled 

forward. 

experienced t h i s  same sensation of apparent tumbling forward during sudden 

During pr ior  t ra in ing  on the  human cent r i fuge ,  Glenn and o thers  had 
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decelerat ion.  Glenn reported t h a t  during the  f i r i n g  of his r e t r o  rockets 

during reent ry  preparations in  h i s  Friendship V I 1  Mercury Capsule, he pre- 

ceived t h e  f a l s e  sensat ion t h a t  he w a s  suddenly accelerat ing i n  t h e  reverse 

d i r e c t  ion (Glenn, 1962). 

There are severa l  categories  of i l l u s i o n s  which result from angular and 

l i n e a r  accelerat ions.  Although these a re  important i n  describing and pre- 

d i c t i n g  human behavior i n  some accelerat ion environments, they a r e  described 

only b r i e f l y  i n  t h i s  paper. Among t h e  most i n t e r e s t i n g  are  the  ~ ~ u l ~ g y r a l  

i l l u s i o n s .  They have t h e i r  genesis i n  s t imulat ion of the sensory receptors 

i n  t h e  semicircular  canals ,  and a r e  described as f a l s e  sensations i n  which 

t h e  v i s u a l  f i e l d  appears t o  be moving o r  spinning around a body axis .  

a r e  many v a r i e t i e s  of oculogyral i l l u s i o n s ,  and some of them occur when t h e  

semicircular  canals  are s t imulated by t h e  onset or  cessat ion of angular 

accelerat ions.  Coriol is  i l l u s i o n s  occur when t h e  head makes secondary 

ro ta t ions  about an ax is  perpendicular t o  t h e  primary axis of t h e  r o t a t i o n  i n  

which a p i l o t  is  being rotated.  In  a r o t a t i n g  room, f o r  example, the  r o t a t -  

ion  of t h e  room produces an e f f e c t  a t t r i b u t e d  t o  t h e  Coriolis accelerat ions 

which s t imula te  t h e  semicircular  canals. 

There 

Vertigo i s  a commonly experienced i l lus ion .  It i s  a false sensat ion 

Of  r o t a t i o n ,  o r  whir l ing arQund, i n  which t h e  p i l o t  feels as i f  t h e  surround- 

ings a r e  revolving about him, or sometimes, as if  he were revolving about 

h i s  surroundings. 

The oculogravic i l l u s i o n s  a r e  apparent t i l t i n g s  o r  displacement move- 

ments which result from t h e  s t imulat ion of t h e  o t o l i t h  apparatus i n  t h e  

u t r i c l e  of t h e  inner  ear. They r e s u l t  from l i n e a r ,  ra ther  than  angular ,  

acce le ra t ions .  During acce lera t ion ,  a t a r g e t  may appear t o  be displaced 

upwards. Conversely, during acce lera t ion ,  t h e  t a r g e t  may appear t o  move 
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downwards. On a centr i fuge or rocket s l e d ,  a p i l o t  may experience a sen- 

s a t i o n  of t i l t i n g  backwards as he acce lera tes ,  and forward as he decelerates .  

Some evidence suggests t h a t  the degree of perceived displacement corresponds 

t o  t h e  angle between the  resu l tan t  force and t h e  normal force of  gravi ty .  

Major s ignif icance is  given t o  i l l u s i o n s  of motion and pos i t ion ,  and 

t h e i r  r o l e  i n  problems of s p a t i a l  d i sor ien ta t ion  f o r  space vehicles  and 

f o r  r o t a t i o n a l  space platforms i s  a matter of major controversy, (Chambers, 

1963). 

DISCRETE MOTOR RESPONSES 

I n  addi t ion t o  influencing t h e  p i l o t ' s  a b i l i t y  t o  perceive s t i m u l i ,  

acce le ra t ion  modifies h i s  a b i l i t y  t o  respond t o  them as w e l l  (See Fig. 35) .  

Although it is general ly  agreed t h a t  acce lera t ion  inf luences discr iminat ion 

reac t ion  time behavior, it has not been possible  t o  ident i fy  a l l  of t h e  

underlying mechanisms which mediate these  e f f e c t s .  (See Fig. 36). During 

acce lera t ion ,  the  changes observed i n  react ion time may be associated with 

p i l o t  impairment i n  a var ie ty  of physical  l o c i .  Acceleration might reduce 

t h e  capacity of the  per ipheral  system t o  receive t h e  s t imulus,  o r  of t h e  

c e n t r a l  nervous system t o  process already received s t imul i  and t o  ind ica te  

discr iminatory choice, as well as reduce t h e  a b i l i t y  of t h e  neuromuscular 

system t o  coordinate the  motor components which t r a n s l a t e  t h e  response i n t o  

t h e  manipulation of t h e  appropriate control  device. In a s e r i e s  of  bas ic  

research s t u d i e s ,  an attempt w a s  made t o  measure t h e  e f f e c t s  of s teady-state  



t ransverse accelerat ion on discrimination time. A discrimination r eac t ion  

t i m e  test  apparatus was developed t h a t  consisted of fou r  small stimulus 

l i g h t s ,  a small response handle containing fou r  s m a l l  response buttons,  

and a programmer device which could present a l a rge  var ie ty  of random 

sequences t o  subjects  on t h e  centr i fuge (Chambers, Morway, e t  al, 1961). 

As each of t h e  lights came on, t h e  subjects  was required t o  press  t h e  

associated f inge r  button with h i s  r i g h t  hand as fast as he could. Both 

the  automatic program which ac t iva t ed  the  st imulus l i g h t s  and the  sub- 

j e c t ' s  responses were fed t o  an analog computer where i n i t i a l  da t a  re-  

duction w a s  accomplished. Following pre-acceleration t r a in ing  t o  

e s t a b l i s h  a s t ab le  basel ine performance l e v e l ,  each subject received 

th ree  blocks of 25 

Each subject  received th ree  such accelerat ion t r ia ls .  Since speed and 

trials each while exposed t o  +6 G for  f i v e  minutes. 
X 

accuracy were both involved i n  t h i s  type of response behavior, times 

and e r r o r s  were normalized and added. The r e s u l t s  are shown i n  Fig. 37, 

i n  which a highly s ign i f i can t  e f f e c t  of t h e  accelerat ion on performance 

w a s  demonstrated. Further ,  t he  e f f e c t  pe r s i s t ed  t o  t h e  post-test  per- 

iod.  Recent experiments have suggested t h a t  t he  oxygen sa tu ra t ion  l e v e l  

of t h e  blood continues t o  be low during t h i s  period. 

Using an auditory t a s k  r a t h e r  than a v i s u a l  st imulus i n  order  t o  

avoid t h e  problem of  v i s u a l  interference which accompanies accelerat ion,  

it has been possible  t o  obtain d a t a  on audi tory r eac t ion  time a t  grayout 

l eve l s .  

add p a i r s  of numbers which he heard via an audi tory magnetic t ape  system 

One such t a sk  (Cope and Jensen, 1961) required the subject  t o  



and then t o  describe the  sum by pressing t h e  small odd and even response 

buttons which were mounted upon h i s  l e f t  and r igh t  hand g r ips ,  respect-  

i ve ly .  

posures t o  grayout l eve l s  indicated t h a t  t h e  time required t o  make these 

responses increased during exposure t o  posi t ive acceleration. 

Research with t h i s  apparatus during posi t ive accelerat ion ex- 

CONTINUOUS PSYCHOMOTOR RESPONSES: TRACKING BEHAVIOR 

Studies of t racking performance during staging accelerat ion pro- 

f i l e s ,  such as may be cha rac t e r i s t i c  of c e r t a i n  two-stage and four-stage 

launch vehicles ,  have suggested t h a t  at t h e  higher accelerat ion l eve l s ,  

p i l o t s  f i nd  it extremely d i f f i c u l t  t o  concentrate on all aspects of a 

complex t a sk  while they are  exposed t o  high accelerat ion loads,  whereas 

a t  t h e  lower accelerat ion levels  they can perform very well .  Figure 38 

presents examples of t h i s  condition, i n  which p i l o t s  performed exactly 

t h e  same ta sks  s t a t i c a l l y  and dynamically f o r  each of two types of 

booster combinations. 

of t he  t a s k  continuously so as t o  f l y  t h e  vehicle through t h e  o r b i t a l  

i n j ec t ion  "window". 

p i l o t s  made s i g n i f i c a n t l y  more e r ro r s  on t h e  yaw quantity during dy- 

namic conditions than during s t a t i c  conditions,  but t h a t  they were able 

t o  maintain the  other  t h ree  t a s k  components very wel l  under both dynamic 

and s t a t i c  conditions.  

not exceed 7 Gx f o r  e i t h e r  type of vehicle .  

The p i lo t ' s  t a s k  w a s  t o  perform t h e  .four aspects 

For both types of  vehicles ,  it was found t h a t  t h e  

I n  t h i s  p a r t i c u l a r  study, t h e  accelerat ions did 

It is i n t e r e s t i n g  t o  compare t h e  performance of a s ing le  astronaut 

who performs t h e  same t a s k  on t h e  centr i fuge both s t a t i c a l l y  and dynamically. 
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Figures 39 and 40 present such a comparison. The most marked difference 

i s  noted between t h e  s t a t i c  and dynamic condition during which t i m e s  t he  

astronaut w a s  performing t h e  reentry t a sk .  Some impairment of perform- 

ance is shown, and t h i s  is a t t r i b u t e d  t o  t h e  acceleration. 

During reentry simulations of t h e  A t l a s  vehicle  on the  human centr i -  

fuge inadvertent control  inputs are not uncommon. These inadvertent  in- 

puts of ten mirror  t he  accelerat ion p r o f i l e  under which a con t ro l  t a sk  i s  

being performed. Figure 4 1  shows an ac tua l  record of t h i s ,  i l l u s t r a t i n g  

inadvertent control  inputs i n  the  r o l l  and yaw axes, using a Mercury- 

type con t ro l l e r .  

I n  addi t ion t o  inadvertent inputs  which accompany accelerat ions,  

In  other  more general  e f f e c t s  of  dynamic conditions may be observed. 

general ,  accelerat ion reduces the  s e n s i t i v i t y  and timing of all con- 

t r o l l e r  movements. 

42. Impairment i n  t racking throughout a 16.5 G accelerat ion p r o f i l e  

i s  sham i n  Fig.  43. 

Examples of t h i s  f o r  runs at 12  Gx are shown i n  Fig. 

. HIGHER MENTAL FUNCTIONING 

It is  general ly  accepted t h a t  exposure t o  high o r  prolonged accel- 

e r a t ion  may produce confusion, unconsciousness, disor ientat ion,  memory 

l apses ,  loss of  con t ro l  of voluntary movements, or prolonged vertigo. 

However, t o  d a t e ,  t h e r e  i s  very l i t t l e  quant i ta t ive data regarding t h e  

e f f e c t s  of  accelerat ion on spec i f i c  i n t e l l e c t u a l  functions. A t  AMAL, 

emphasis i n  t h i s  a r ea  has been concentrated on immediate memory, s ince  

an astronaut  o r  s c i e n t i f i c  observer during some phases of f l i g h t  may be  

required t o  perform such t a sks  as monitoring, reporting, memory, and 



processing of information, a l l  of which require  immediate s torage o r  

memory of information. 

In  cooperation wi th  Rutgers University, we developed a continuous 

memory t e s t i n g  apparatus which could be used on t h e  AMAL centrifuge. 

required t h e  continuous and r e p e t i t i v e  memorization of a port ion of  a 

sequency of random symbols. 

quired t o  compare it with h i s  memory of t h e  symbol t h a t  had been pre- 

sented t o  him two, t h r e e ,  o r  four presentat ions previously. ( See Fig. 

44 ) .  New symbols appeared continuously, so t h a t  t h e  subject  constantly 

had t o  forget  e a r l i e r  symbols as he added new ones. 

symbols were presented for each of  the  runs. 

each run stayed at +5 Gx for  f ive  minutes. 

subjec ts ,  indicated t h a t  the subjec ts  could continue t o  perform t h i s  

t a s k  j u s t  as w e l l  during exposure t o  +5 C as they  could s t a t i c a l l y .  How- 

ever ,  subjec t ive ly ,  t h e  subjects reported t h a t  t h e i r  performance deter-  

io ra ted  under C and t h a t  they generally regarded +5 C for f i v e  minutes 

as a s t r e s s f u l  experience. 

subjec ts  t e s t e d  i n  t h e  centrifuge gondola did more poorly than subjects  

t e s t e d  i n  a regular  t e s t i n g  room. The implication seems t o  be t h a t  some 

apprehension or anxiety may have been ac t ing  t o  i n t e r f e r e  with m a x i m u m  

performance. 

It 

As each symbol occurred, t h e  subject  w a s  re-  

Approximately 50 

I n  t h e  e a r l i e r  s tudy,  

The da ta ,  col lected on 21  

It was i n t e r e s t i n g  t o  note ,  however, t h a t  

The r e s u l t s  of t h i s  experiment a r e  shown i n  Fig. 45. 

In  a more recent study conducted on t h e  AMAL cent r i fuge ,  we de- 

veloped a task  which required the subject  t o  monitor two small display 

tubes which were loca ted  d i rec t ly  i n  f ront  of h i s  normal l i n e  of vis ion.  

The l e f t - s i d e  tube presented numbers, and the  r ight-s ide tube presented 

plus  and minus symbols. The task  w a s  t o  continuously make matches f o r  

these two presentat ions simultaneously as t h e  runs proceeded and t o  s e l e c t  
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one of two but tons t o  ind ica te  whether both the  number and symbol which 

were then appearing were t h e  same as or  d i f f e r e n t  from those which had 

occurred on a spec i f ied  number of t r i a l s  previously. Acceleration loads 

of 1, 3,  5 ,  7 ,  and 9 G's were studied. Each test  w a s  2 minutes and 18 

seconds long. The r e s u l t s  of t h e  experiment suggested tha t  prof ic iency 

i n  immediate memory w a s  maintained a t  l e a s t  through 5 t ransverse G. 

However, at +7 and +9 Gx, sane impairment of inmediate memory was 

observed. The r e s u l t s  of t h i s  experiment a r e  shown i n  Fig. 46. 

During prolonged exposure t o  accelerat ion,  the  continuous concen- 

t r a t i o n  necessary f o r  performance is  d i f f i c u l t ,  fa t iguing and boring. 

For example, during an extended 2 G centr i fuge run which l a s t e d  24 hours, 

t h e  subject  s t a r t e d  out with a somewhat de ta i led  s e t  of procedures t o  

follow i n  making medical observations upon himself, recording h i s  sub- 

j e c t i v e  comments, and wr i t ing  and typing (Clark and Hardy, 1959). How- 

ever ,  t h e  subjec t  found t h a t ,  i n  s p i t e  of h i s  i n i t i a l  high resolves ,  he 

took naps and l i s t e n e d  t o  t h e  rad io  and suffered primarily from boredom 

and fat igue.  Areas of contact with t h e  cha i r  i n  which he w a s  seated 

were t h e  sources of t h e  grea tes t  loca l ized  discomfort. A t  1 6  hours el- 

apsed t i m e ,  t h e  subject  reported t h e  onset of aesthenia  of t h e  r i n g  and 

l i t t l e  f inger  and outer  edge of t h e  palm of t h e  l e f t  hand. The subject  

found it impossible t o  maintain h i s  o r i g i n a l l y  prescribed maintenance 

and observat ion schedules. 

Chambers and Ross secured a subject  i n  a Mercury-type contour couch 

and required him t o  perform t h e  two symbol running matching memory t a s k  

(previously descr ibed)  every 10  minutes f o r  four  and one-half hours. 

The subjec t  w a s  able  t o  perform t h i s  t a s k  throughout the e n t i r e  period 



with only minor performance impairment. 

are  shown i n  Fig. 47. 

The r e s u l t s  of t h i s  experiment 

EMOTIONAL BEHAVIOR 

It is a common observation t h a t  both t h e  an t i c ipa t ion  and occurrence 

of accelerat ion forces contribute t o  anxiety and other  types of emot- 

i ona l  behavior. As f a r  back as 1946, Hallenbeck, Wood, Lambert, and Allen 

found t h a t  pulse r a t e s  were approximately 10 beats f a s t e r  per minute 

during the  i n t e r v a l  j u s t  pr ior  t o  G than during the  G i t se l f .  

crease i n  preaccelerat ion pulse r a t e  i s  a psychological e f f ec t .  Brown, 

E l l i s ,  Webb, and G r a y  (1957) have demonstrated t h a t  during a s e r i e s  of 

centrifuge runs going as high as 12 G t h e  pulse r a t e s  of t he  subjects  

immediately p r io r  t o  exposure t o  the  accelerat ion were f a s t e r  than during 

the accelerat ion run i t s e l f .  This increase i n  pre-acceleration pulse 

r a t e  w a s  highly s ign i f i can t  f o r  a l l  subjects .  I n  t h e  case of subjects  

who had had some p r i o r  experience on the  centr i fuge,  t h e  pulse rate 

varied according t o  the  G-level which was ant ic ipated.  ( h e  of  t he  

most consis tent  e f f e c t s  of accelerat ion i t s e l f  i s  an increase i n  pulse 

r a t e ,  and the re  seems t o  be some suggestion t h a t  t h e  increment may have 

been due t o  cardiac conditioning r a the r  than t o  anxiety.)  

The in- 

Laboratory experience indicates  t h a t  naive subjects  undergo 

s ign i f i can t  changes i n  pulse r a t e ,  blood pressure,  and GSR i n  an t i c i -  

pation of t h e  s tar t  of high C exposure. 

minimized following repeated ekposures t o  accelerat ion.  

been r a i sed  concerning t h e  e f f ec t s  of high accelerat ion on the  galvanic 

skin response,  a measure tha t  is frequently used as an indicator  of  

However, these changes become 

The question has 



emotional behavior. 

which GSR w a s  measured from the  so l e s  of t he  f e e t  during exposure t o  

12  Gx. 

period of exposure t o  peak G ,  and f o r  several  seconds following re- 

t u r n  t o  the  o r ig ina l  1 G conditions. These osc i l l a t ions  i n  t h e  GSR 

response suggest t h a t  some kind of emotional behavior may have been 

occurring during these portions of these runs. 

Figure 48 shows the results of one experiment i n  

The f igu re  shows extremely unusual GSR recordings, during t h e  

I n  most instances,  it i s  not possible  t o  make quan t i t a t ive  measures 

o f  emotional behavior immediately before ,  during, o r  after these  cen- 

t r i f u g e  exposures, because of t h e  extensive number of other engineering 

and physiological t e s t s  which are  required,  and a l so  because the re  a r e  

no good quan t i t a t ive  measures of emotionali ty which may be used on 

t h e  centr i fuge.  However, var iables  other  than the accelerat ion a re  

items of major concern. Pressure po in t s ,  muscle cramps and pains due 

t o  the  p i l o t ' s  r e s t r a i n t  system, uncomfortable temperature, f a i l u r e  of  

t h e  ur inary bag, discomfort due t o  the  biomedical sensors o r  spec ia l  

f l i g h t  gear ,  and long-term delay i n  planning t e s t i n g  due t o  equipment 

malfunction, have created extremely aggravating and sometimes emotionally 

d i s tu rb ing  conditions.  However, a l l  avai lable  da t a  seem t o  ind ica t e  

t h a t  near ly  a l l  of t h e  emotional aspects a r e  highly suscept ible  t o  t r a i n -  

i n g  and experience. It appears t h a t  the well-trained subject is capable 

of compensating f o r  and overcoming many psychological problems which he 

may encounter before ,  during o r  following high-g accelerat ion exposures. 

CHARAC?TERISTICS OF PERFORMANCE DECREMENT AND ERROR 
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During t h e  hundreds of accelerat ion t e s t s  conducted on astronauts ,  

t e s t  p i l o t s  and o ther  volunteer subjec ts ,  r a t h e r  s p e c i f i c  character- 

i s t i c s  of p i l o t i n g  performance impairment have been observed under high 

t ransverse G conditions. These a r e  as follows: 

a. Increase i n  error  amplitude as G duration and amplitude increase 

b. Lapses, o r  increasing unevenness and i r r e g u l a r i t y  of performing 

t h e  task .  

c. Performance osc i l la t ions .  

d. Fal l ing o f f  or  reduction i n  proficiency on some p a r t s  of a 

task  while maintaining proficiency on other  par t s .  

e .  

f .  Inadvertent control  inputs .  

g .  Fai lure  t o  detect  and respond t o  changes i n  t h e  stimulus 

Changes i n  phasing and/or timing task  components. 

f i e l d .  

h .  Errors  i n  re t r iev ing ,  in tegra t ing ,  s t o r i n g  and processing 

information. 

i. Changes i n  t h e  r a t e  of performance, such as sudden i n i t i a t i o n  

of performance non-essential t o  t h e  task .  

j. Response lags  and er rors  in  timing. Increases i n  latency of  

response t o  discrimination s t imul i .  Also, t h e r e  may be l a r g e  changes 

in  timing of component response sequences, o r  gross misjudgments of t h e  

passage of time. 

k. Overcontrolling or undercontrolling, as during a t r a n s i t i o n  

phase. 

1. Omission of portions of simple t a s k s ,  o r  of p a r t s  of complex 

perceptual  motor tasks .  These occur espec ia l ly  during overload when 

t h e  subject  may not process all of  t h e  stimulus information, such as 
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t h e  inputs  necessary t o  perform the secondary pa r t s  of the t a s k  a t  

t he  o r ig ina l ly  achieved l e v e l  of proficiency. 

m. Approximations. The p i l o t ’ s  behavior becomes l e s s  accurate ,  

although t h e  t a s k  does not increase i n  d i f f i c u l t y  level .  

become less precise ,  but minimally adequate t o  meet the required c r i -  

t e r i o n  of proficiency. 

H i s  responses 

n. Stereotyping of  responses and movements, regardless o f  t he  

stimulus s i tua t ion .  A l l  of t h e  s t i m u l i  appear t o  have an apparent 

equivalence t o  the  subject  during prolonged stress, f o r  example. 

Figure 49 shows a good example of t h i s  type of response at 15 G. 

CONCLUSIONS 

Seventeen general  conclusions may be reported regarding t h e  psy- 

These may be s t a t ed  chophysiological aspects of  accelerat ion Stress. 

as follows: 

1. Physiological tolerance.  Physiological tolerance,  o r  t he  

a b i l i t y  t o  withstand physiologically any accelerat ion stress, i s  a 

function of many variables .  

2. Performance tolerance.  In  addi t ion t o  physiological tolerance 

l i m i t s  which define the  end points  f o r  r e l i a b l e  h c t i o n i n g  of any 

p a r t i c u l a r  physiological system during exposure t o  accelerat ion s t r e s s ,  

t h e r e  a r e  also performance tolerance limits which define t h e  end points  

f o r  r e l i a b l e  functioning of  any par t i cu la r  performance a b i l i t y  system 

under these same conditions of accelerat ion.  

formance to l e rance  may be funct ional ly  r e l a t ed ,  but need not be the  same, 

s ince  both are dependent upon the  c r i t e r i a  which are  accepted. 

The physiological and per- 
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3. Relationship between performance and PhysioloRical tolerances.  

Physiological tolerance limits define c e r t a i n  performance to le rance  bound- 

a r i e s .  

tolerances from physiological tolerances i s  extremely unrel iable .  Re- 

sults of our experiments indicate t h a t  within these  boundaries, t h e  

re la t ionship  between performance and physiological responses i s  s m a l l .  

However, within these boundaries, t h e  predict ion of performance 

4. G-protection. The type of G-protection used has a very im- 

portant  influence on t h e  p i l o t ' s  a b i l i t y  t o  t o l e r a t e  accelerat ion,  per- 

form t a s k s ,  and maintain proficiency during accelerat ion stress. 

5. For an accelerat ion of given r a t e  of onset and magnitude, 

physiological tolerance i s  highest f o r  Gx, next f o r  -Cx, next f o r  G Z ,  and 

lowest f o r  -Gz, direct ions of force.  

6. Visual Decrement. Acceleration s igni f icant ly  inf luences the  

a b i l i t y  t o  see.  

t h e  human p i l o t  experiences v isua l  disturbances. These disturbances re-  

s u l t  from s h i f t s  in  t h e  ava i lab i l i ty  of arterial  blood t o  t h e  r e t i n a ;  

mechanical pressure on t h e  eyes, such as "eye-balls-in" ; "eye-balls-out" , 

"eye-balls-up'' , and "eye-balls-down" or mechanical forces  act ing on t h e  

eye musculature, eye l ids  and associated s t ruc tures ;  d i s tor t ions  of t h e  

eye anatomy; and accumulation of t e a r s .  

During the occurrence of all types of high accelerat ion,  

7. Individual  Differences. Major individual  differences e x i s t  among 

human subjec ts  i n  t h e i r  a b i l i t y  t o  sus ta in  accelerat ion s t r e s s  at  high G. 

8. Acceleration TraininR and Pract ice  Effects .  Major increments 

occur as a function of pract ice .  Pract ice  r e s u l t s  i n  physiological adapta- 

t i o n  and conditioning, as well as  learning t o  make compensations f o r  t h e  

accelerat ion disturbances. 

dat ing t o  t h e  sensat ions induced by G ,  ( b )  learn ing  t o  resist  t h e  e f f e c t s  

Abi l i ty  t o  perform improves by ( a )  accomo- 
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of G through proper s t r a i n i n g  and breathing techniques, (.cl learning 

the  t a s k  i n  t h e  context of changed muscular and sensory capac i t ies  

induced by t h e  accelerat ion,  and (d] learning t o  execute t h e  physio- 

l o g i c a l  and performance aspects simultaneously. 

9. I l l u s i o n s  of motion and posi t ion.  Certain types of acce lera t ion  

exposures produce i l l u s i o n s ,  or f a l s e  perceptions, of one's pos i t ion  and 

motion. 

10. Control Devices. The nature of the  cont ro l  device which is 

used i n  performing a t a s k  under G has a s igni f icant  effect  upon per- 

formance. 

11. Feedback Sens i t iv i ty .  Acceleration impairs the a b i l i t y  of t h e  

p i l o t  t o  sense changes i n  control  c h a r a c t e r i s t i c s  which may occur as a 

function of s p e c i f i c  accelerat ion vectors. There may be d i r e c t  r e s u l t s  

of t h e  accelerat ion forces  on t h e  receptors ;  there  may be an e f f e c t  on 

the  cent ra l  o r  autonanic nervow system; or t h e r e  may be an e f f e c t  on 

c i rcu la tory  and other  physiological systems vhich ind i rec t ly  a f f e c t  t h e  

a b i l i t y  of the subject  t o  sense changes i n  h i s  hand and/or f ingers .  

12. Task d i f f i c u l t y .  Changes i n  t a s k  charac te r i s t ics  uhich have 

l i t t l e  e f f e c t  upon s t a t i c  performance may ser iously impair perfoormance 

under high G. 

13. Higher Mental Functions. I n t e l l e c t u a l  skills, p i l o t  concentra- 

t i o n ,  time judgment, time perception, pred ic t ion ,  and i m e d i a t e  memory, 

are  inf luenced by G. 

14. Emotional Processes, Fear, and Anxiety. Anticipation of t h e  

e f f e c t s  of acce lera t ion  may produce emotional react ions,  f e a r ,  end 

anxiety,  which a re  sometimes grea te r  than the  d i r e c t  e f fec ts  of accelera- 

t i o n  themselves. 
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15. Effects  of combined s t resses .  Signif icant  e f fec ts .of  accelera- 

t i o n  occur as a function of combined s t r e s s e s ,  even though, taken independ- 

en t ly ,  each stress may not produce t h e  e f fec t .  

16. Character is t ics  of Performance decrement and Error. During 

t h e  hundreds of accelerat ion tests conducted on astronauts., t e s t  p i l o t s ,  

and volunteers ,  r a t h e r  spec i f ic  charac te r i s t ics  of p i l o t i n g  performance 

impairment have been observed under high t ransverse C conditions. 

17. Combined Stresses .  I f ,  i n  addi t ion t o  accelerat ion stress, 

t h e  astronaut i s  exposed t o  other  environmental s t r e s s e s ,  h i s  responses 

may r e s u l t  from t h e  combined e f f e c t s  of these s t r e s s e s  and/or t h e  i n t e r -  

act ions among them. 
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Figure 3: Average acceleration tolerances for transverse supine acceleration (ffix), 

t r m s v e r s e  Prone acceleration ( 4 ),  Positive acceleration (+C ) ,  and negative 

acce lera t ion  ( -cZ) .  
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Figure 4: Endurance time i n  seconds vs. physiological G uni t s  f o r  a group of h i g h 4  
motivated p i l o t s .  

figure 5 :  Maximum t o l e r a b l e  acceleration prof i les .  The figure shows the  greatest  
acce le ra t ion  time h i s t o r i e s  t h a t  have been to le ra ted  on centrifuges,  using 
both s p e c i a l  acce le ra t ion  protection devices and posit ioning. 
show t h r e e  curyes which def ine  about t h e  seme area of +Gx times t i m e .  A heavy 

l i n e  connects t h e  peeks of these  t h r e e  curves, and loca tes  t h e  peaks of other 
curves enclosing t h e  same m a .  
acce lera t ion  prof i les  which a re  re la ted  t o  space f l i g h t ,  a l l  of which are 
to le rab le .  

Ihe s o l i d  l ines  

I h e  dashed l i n e  encloses a number of possible 



FWYSiGLGGICAL DESCRIPTION OF ACCELERAI ION 

I-G*  

Figure 1: Phys io log ica l  d e s c r i p t i o n  of a c c e l e r a t i o n  

CCNTLR 

Figure  2 :  Procedure f o r  measuring the p o s i t i v e  a c c e l e r a t i o n  value at which grqyout  
and b lackou t  occur .  As C i n c r e a a e s ,  t h e  s u b j e c t  a t t e n d s  t h e  c e n t e r  l i g h t ,  and 
responds t o  t h e  random p r e s e n t a t i o n s  o f  t h e  p e r i p h e r a l  l i g h t s  by Operat ing a 
s m a l l  sw i t ch  t o  t u r n  off each l i g h t  as r a p i d l y  85 he can a s  it i s  cont inuoualy 
tu rned  on by t h e  i l l umina t ion  s t imu lus  programmer. 
p o s i t i o n  of t h e  p e r i p h e r a l  l i g h t s  have been s t u d i e d .  
t h e  two extreme p o s i t i o n s  which have been used f r equen t ly .  
a b i l i t y  t o  d e t e c t  t h e  p e r i p h e r a l  l i g h t s  dec reases  u n t i l  t h e  s u b j e c t  f a i l s  t o  
respond.  This  is  ca l l ed  grayout .  
reached at vhich t h e  s u b j e c t  a l s o  l o s e s  c e n t r a l  v i s i o n .  
o u t ,  and is expressed i n  t e r n  of t h e  C-level at vhich Vision is completely l o s t  
(after Z a r r i e U o  e t  al, 1958) 

Many va r i a t i -8  i n  t h e  
Th i s  f i g u r e  i l l u s t r a t e s  

As 0 i n c r e a a e s .  

If G con t inues  t o  i n c r e a s e ,  a po in t  is soon 
Th i s  is c a l l e d  black-  
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Figure 6: Resu l t s  o f  one experiment  conducted on t h e  AMAL Human Cen t r i fuge  shoving 

It w a s  found t h a t  

r o o t  mean squa re  e r r o r  f o r  cont inuously performing a p i l o t i n g  t a s k  d u r i n g  ex- 
posure t o  a c c e l e r a t i o n s  va ry ing  i n  d i r e c t i o n  and magnitude. 
d i f f e r e n t  amounts of e r r o r  were a s s o c i a t e d  wi th  t h e  magnitude of G and a l s o  
wi th  t h e  d i r e c t i o n  of G ( a f t e r  Cree r ,  e t  d, 1962). 

MAXIMUM ACCELERATION IN G UNITS 

F i g u r e  7:  Average e s t ima ted  pe r fomance  decrements by p i l o t s  who performed caeplex 
launch and i n s e r t i o n  maneuvers through peak acce le ra t ions  of 1, 3, 6,  9. 12. 
and 15 G-. (Chambers and Hitchcock,  1963.1 



Figure 8 Cmparlson Of phYSlOlOgiCd and performance measures recorded 
under acceleration stress. 

0.1 I I 

1 I 8 I2 

ACCELEIATIO(. G u n ~ i e  

pig- 9 :  Effects of C 
and nitrogen climiihtion. 

on respiratory frequency. t i d a l  voimc. minute 
(after Zechman, e t .  -1 . .  19603. 

Figure 10: Oxygen consumption during trmsverse acce lerat iow at 5 .  8. 10. a d  
12 Gx.  (From Zechmm, e t .  81.. 1960.) 
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rigure 11: Example of data col lected fmm the  AMAL Human Centri-e i n  vhich a 
subject  vas exposed t o  a  t rmsveme  accelerat ion profile a8 hea r t  r a t e  and 
respirat ion r a t e  were recorded on magnetic tape and l a t e r  analyzed. 
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ARTERIAL O X Y G E N  SATURATION UNDER 
FORWARD ACCELERATION 
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W A V E  PROFILE . 
O N S E T  RATE. l .5  

-30 0 30 63 PO 120 0 10 60 90 1201501102~0  
I E C O V E I V  PHASE 

7 5 1  /--Zz-A , , , , , , , 
D E S A T U R A T I O N  W A S E  

I 
.._ . -. 

TIME IN S E C O N D S  
F i b e  12: Effects  of 4. 6, 8,  and 10 G, on the oxygen saturat ion o f  t he  a r t e r i a l  

An ear b l m d  of 25 p i l o t s  in a supine p s i t i o n  on the  AMAL Human Centrifuge. 
oximeter VM used t o  measure oxygen saturat ion throwbout each of t he  acceler- 
a t ion p ro f i l e s .  

ARTERIAL O X Y G E N  SATURATION 
UNDER FORWARD ACCELERATION 
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Figure 13: Effects  of t ransverse accelerat ion on a r t e r i a l  oween sa tu ra t ion  level .  



Figure 14: P i l o t  vearing C-suit for  protec t ion  against  p o s i t i v e  a c c e l e r a t i o  

Figure 15:  Example of e a r l y  model of contour couch developed for  sus ta in ing  high 
transverse supine (+c ) acceleration f o r c e s .  



Figure 16: Exemples of ind iv idua l ly  molded cmtour  couches used i n  p i l o t  
performafice studies during exposure t o  t r m s v e r s e  G Stress environments. 

-MI"",- 

TIME TO I M t R U C E  -.*I 

Figure 17: Comparison OF maximm protectLon w a i n s t  t h e  e f fec ts  of t rans-  
verse acceleration (+C ) under conditions of optimal posit ioning in 

t h r e e  types Of r e s t r a i n t  Systems: 
and water imers ion .  

Contour couch, net Support Couch, 

Figure 18: Relative amounts of tracking r a t e  e r r o r  i n  four groups of sub- 
j e c t s  following administrations of dextrc-smphetmine (10 W S ) ,  
meprobamate ( b o 0  m a s ) ,  seco-barbital  ( 3 / b  g r a i n ) ,  a n d  placebo (cont ro l ) .  
I t  i s  postulated t h a t  acceleration protection may be provided by certaln 
types of pharmacological w e n t s .  

9 3 7  



COORDINATE CONVERTER CENTRIFUGE DRIVE SIGNALS 

AMAL CENTRIFUGE 

CENTRIFUGE W W E R  

Figure 19:  Diagram Of the human centrime and aasociatcd cmputer f a c i l i -  
ties t o  provide closed-loop f l ight  Simulation of space vehicle 
environments. 

Figure 21: Mercury Astronaut performing a capsule attitude c a t r o l  -euve~ 
during n simulated space f l i g h t .  during early centrifuge simulations 
of Mercury f l i g h t s .  
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H I  J 
Time on Minutes 

A Escape tower lettison 
B Capsule separatton 
C Retro sequenctng H Snorkel and lnttlated 
D Retro attitude conflrmed 

(or dented ) by telemetry 
E Retro fire 

F Retro pack lettlson 
G Retract scope 

I Drogue chute 
J wain chute 

Figure 2h: Approximate G p r o f i l e  with event tines and ass0ciat.d telepanel 
indicators used in centrifwe simulations and LLStrOnaut trainlng in 
supwrt. of Project Mercury.  



I ln tacmW 
Figure 25:  Redstone-Mercury acceleration prof i l e ,  as Simulated on the AMAL 

Pitch and yaw scores in the upper part of the graph Hmm Centrifuge. 
Were based on tracking Performance independent of the Mercury fliEht 
t w k .  



Ttme In MlnuIeS 

Figure 27: Example o f  pngsiolagical responses t o  B centrifuge s i m l a t i o c  of 
a Gemini acceleratior.  p r o f i l e .  "ne acceleration p r o f i l e  and the re- 
sulting electrocardiographic and respiratcry data  are exmpler: of 
t h a t  obtained f rm the  AWL R m a n  Centrifase i n  support of ProJec t  
Gemini astronaut t ra in ing .  
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Figure 29: Arterial oxygen saturat ion under G entry conditions simulated on 

t h e  AMAZ, Human Centrifuge. 
f i gu re  i s  representat ive of a group of p ro f i l e s  which were simulated. 

The accelerat ion p r o f i l e  shown i n  t h i s  

TIYE TO GRAYOUT AT MAXIMUM G 

Figure 30: Relationships among amplitude, duration, and r a t e  of onset of 
pos i t i ve  accelerat ion for  grayout (Stall, 1956). 
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Figure 32: Results of experiment showing relat ionship between brightness 
discrimination threshold and background luminance for  ?CUP l eve ls  cP 
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Fosi t ive accelerat ian.  
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- -  - + GI, Normal Air 
-.- = + GI, 100% 02 
-- - -- = + GI, 100% 9 

plus positive 
pressure 
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I 2 3 4 5 6 7 

Accelerotion in Gx Units 
Figure ?3:  Comynrisor. of e f f e c t s  o f  b r e a t h i n i  n o m a 1  a i r ,  100c oxygen, and 

100% oxygen p l u s  p o s i t i v e  pressure, on b r lEh tness  c o n t r a s t  requirer.er.ts, 
as measured OE t h e  /cW ::mar. Cer. t r i fuge.  



Figure  35: Movements j u s t  p o s s i b l e  under cond i t ions  of veh ic l e  a c c e l e r a t i o n s .  

0 I A b 8 

FORWARD ACCELERATION. +C, 

Figure  36: Mean response t imes  ob ta ined  i n  more than 900 t e d -  
during exposure t o  t r a n s v e r s e  G a c c e l e r a t i o n s .  ( a l t e r  

Kaehler  and Meehan, 1960) .  



A- 
_--- _ _ _  \ 

\ Expressed os combined 
norma/lzed reoct~on 
times p/us normdi'ed 
errors. 

'0' 

I 1 I I 

I 3 6 9 12 
Acceleration in G Units 



ROLL 

YAW 

PITCH 

Somple Performonce Under Stotic Conditions 

Figure 39: Recording of sample performance under s t a t i c  conditions.  

Performance of the Some Pilot Under Dynomcc Condltlans 

Figure 40: Recording of performance'of the  same p i l o t  (as shown i n  Fig.  39) 
under dynamic centrifuge simulation conditions reaching 8 G 

X '  
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Figure b2: Sample recordings of p i l o t i n g  performance during exposure to  
12 Cx on the human c e n t r i h e .  



Figure  43: Example of decrement i n  t r a c k i n g  performance during exposure t o  a 
16 G p r o f i l e .  

of t h e  t w o  s u b j e c t s .  

A 3.5 mm t a r g e t  was used i n  a dua l  pu r su i t  t a s k  by each 

( C l a r k e ,  e t  al, 1959) 
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Figure 45: Mean percen t  co r rec t  responses  f o r  s t a t i c ,  5 G ,  and p o s t - t e s t  
runs, c o n t r o l  ve r sus  experimental  group,  on 2-back, 3-back, and h-back 
immediate memory t a s k .  

1st 2nd 3rd 4th 

Figure b6:  Success ive  qua r t e r s  s c o r e s  f o r  3, 5, 7 and 9 C x ,  shoving per- 

formance on immediate memory t a s k .  (Ross, Chambers and Thompson, 1963) 



I - bock. 2 -  bock,  monuol N= I4 
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Figure 47: Mean nmber correc t  BS e. f m c t i c n  of successive four-series blocks 
f o r  l-back and TO-backimmediate memow t e s k  responses during a 4 l/2 
hour  centr i fwe run at 2 G . 

Figure 49 :  Sample recordings of pilot ing performance during exposure t o  
10 G, and t o  1 5  Gx on the human centrifuge. 
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CLOSED ATMC6PHERES 

bY 

George A. Albright 

Republic Aviation Corporation 

INTRODUCTION 

The r o l e  of simulation i n  "closed atmospheres" i s  t o  e luc ida te  and 

resolve t h e  physiological  and engineering problems associated uith a 

closed environment and t o  der ive and t e s t  t h e  l i f e  support system de- 

s ign  requirements f o r  fu ture  manned space systems. Simulation s tudies  

a r e  necessary t o  (1) determine man's pbysiolcgical  tolerance, (21 

develop, t e s t ,  and qual i fy  t h e  l i f e  support system and suhsystems, and 

( 3 )  

t e g r a t o r  of t h e  manned space system. Previous programs have determined 

procedures for obtaining these gosls (e.g., Project  Mercury, Gemini a t -  

mosphere va l ida t ion  program, subsystems and component f l i gh t  qua l i f ica t ion  

procedures, and f i n a l  acceptance t e s t i n g  of the  man-system i n  space 

simulation f a c i l i t i e s ) .  

a r e  being expanded t o  permit these procedures for the  Gemini and Apollo 

programs. 

e s t a b l i s h  that man can survive and perform 85 a man-machine in- 

Governmental and i n d u s t r i a l  simulation f a c i l i t i e s  
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The f i d e l i t y  of the space simulation required versm i t s  cost  

and p r a c t i c a l i t y  has t o  be resolved on t h e  individual  requirements 

of t h e  simulation and the  objectives of t h e  test  program. 

l a t i o n  of t h e  complete s o l a r  spectrum required for thermal balance 

or solar panels s tudies? What is t h e  e f f e c t  of absence of convective 

currents  i n  weightlessness on t h e  vent i la t ion  and thermal requirements 

f o r  t h e  "closed atmosphere"? 

simulators dupl icate  the "closed atmosphere"? 

(e.g., v ibrat ion,  noise, accelerat ion,  e t c . )  be simulated? 

of combined stress on man, machine, and t h e  man-machine system m u s t  

be evaluated and, where c r i t i c a l  in te rac t ions  occur, these should be 

included i n  t h e  space simulation t e s t  program. Unfortunately, a l l  of 

the  s t r e s s e s  of t h e  space environment can not be simulated in  ground- 

based s tudies  (e .g . ,  weightlessness, rad ia t ion ,  e t c . ) .  

Is simu- 

Should procedural ground t r a i n e r s  o r  

Should physical stress 

The e f f e c t s  

In  a NASA study program, Republic s tudied " m e  Biomedical and 

Human Factors Requirements For A Manned Earth Orbi t ing Stat ion" (1) . 
The Phase 1 EiIOSTAT report determined which biomedical and human 

fac tors  measurements should be made aboard a space s t a t i o n  t o  ensure 

adequate evaluation of the  astronaut 's  hea l th  and performance during 

prolonged space f l i g h t .  The major environmental fac tors  or s t r e s s e s  

from launch t o  re-entry and re turn  t o  ear th  from an o r b i t  incl ined 

approximately 30° t o  the equator at a n . a l t i t u d e  of 200-300 naut ica l  

miles were categorized as weightlessness, dynamic f a c t o r s ,  ionizing 

rad ia t ion ,  cabin atmosphere, contaminants, thermal environment, 

c i rcadian rhythms, and psychophysiological fac tors  (Fig. 1 and Fig.2). 

One of t h e  recommendations of t h i s  repor t  w a s  t h a t  "extensive ground 
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based s tudies  be conducted t o  evaluate t h e  e f f e c t s  of variables  other  

than weightlessness (e.g., cabin atmosphere, contaminants, c i rcadian 

rhythms, s m a l l  r a d i i  centr i fugat ion,  radiat ion) .”  

Circadial  rhythmicity may exert  a vital r o l e  i n  t h e  control of 

endocrine Possibly t h e  a l t e r a t i o n  of rhythmic metabolic 

a c t i v i t y  may cause an increase in  t h e  adrenal glands‘ production of 

cortisone. 

physiology, some of which might be f a l s e l y  a t t r i b u t e d  t o  the e f f e c t s  

of weightlessness (e.g., negative calcium and nitrogen balance, e lec t -  

ro ly te  end f l u i d  s h i f t ,  and psychic changes). 

Hypercortosonemia produces profound changes i n  t h e  body’s 

I n i t i a l  concern about the e f f e c t s  of t h e  space environment center 

around t h e  e f f e c t s  of weightlessness on t h e  cardiovascular and neuro- 

muscular-skeletal systems. The subacute, l a t e n t ,  and chronic e f f e c t s  

of space f l i g h t  center  more around t h e  hematopoietic, pulmonary, and 

metabolic systems and genet ic  changes from exposure t o  “closed atmos- 

pheres“ and ionizing radiat ion.  

atmospheres and t h e  in te rac t ions  of ionizing rad ia t ion ,  increased 

p a r t i a l  pressure of oxygen, and contaminants are unknown. 

The long-term e f f e c t s  of a r t i f i c i a l  

Ground simulation s tudies  i n  “closed atmospheres” w i l l  provide 

guidel ines  t o  e s t a b l i s h  the  design requirements for development of 

“closed atmosphere” systems. Where s igni f icant  pena l t ies  are incurred 

i n  meeting these  requirements, extensive simulation s tudies  may permit 

re laxa t ion  of standards or necess i ta te  t h e  development of an a l t e r n a t e  

approach. Unfortunately, there  i s  poor agreement i n  t h e  biological  

community even on t h e  p a r t i a l  pressures of oxygen t h a t  is  toxic ,  or 

t h e  r o l e  of i n e r t  gases, l e t  along potable  water standards or t h e  l e v e l  



of conterninants permissible for continuous long-term exposure. 

the  environmental variables appear i n f i n i t e  and b io logica l  responses 

are complex, progress can be made by studying c lasses  of s t r e s s e s  and 

b io logica l  system responses. 

s tud ies  should be operat ional ly  oriented t o  resolve system design pro- 

blems and provide an optimal system t h a t  canpromises ne i ther  man nor 

the  syetem and is  r e a l i s t i c  i n  tenus of operat ional  constraints .  

W i l e  

Hovever, t h e  major emphasis i n  simulation 

FACILITY REQUIREMENTS 

The successful  development of closed l i f e  support systems s u i t a b l e  

for space f l i g h t  will require t h e  pooling of governmental, i n d u s t r i a l ,  

and univers i ty  t a l e n t s  and resources. F a c i l i t y  requirements for the  

research development and t e s t  programs , w i l l  vary v i t h  t h e  vehicle ,  

system, subsystem, or component being tes ted .  Basic research i n  under- 

standing human physiological e f f e c t s  of a r t i f i c i a l  envkrcnments w i l l  

include animal research, espec ia l ly  t o x i c i t y  s tud ies .  However, i n  

t h e  f i n a l  ana lys i s ,  man m u s t  be t h e  test subject  requir ing the  use 

of man-rated f a c i l i t i e s .  Elaborate man-rated f a c i l i t i e s  have and a r e  

being constructed both a t  NASA centers  and by major NASA contractors .  

For t h e  Gemini program, McDonnell Ai rcraf t  Corporation has in- 

s t a l l e d  t e n  cy l indr ica l  vacuum-thermal chambers having diameters of 

2-1/2, 5-1/2, 8, 18, and 32 f e e t  equipped with cold w a l l s  maintained 

at l i q u i d  nitrogen temperatures for t h e  thermal-vacuum t e s t i n g  Of 

Gemini components and systems and manned t e s t s  of t h e  Gemini space- 

c r a f t  v i t h  human subjects. 
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The space environment simulation chambers under construction' a t  

t h e  Manned Spacecraft Center, Houston, Texas, comprise two la rge  man- 

ra ted  chambers. 

diameter v e r t i c a l  cyl inder ,  80 f ee t  i n  he ight (3) .  

handle a spacecraft of up t o  approximately 75 f e e t  i n  height and 25 

f ee t  i n  diameter. The smaller chamber i s  35 fee t  i n  diameter and 42 

f e e t  high. 

pumping systems, l i q u i d  nitrogen and gaseous helium ref r igera t ion ,  

and t h e  necessary control  instrumentation. 

The l a rge  chamber (Fig. 3) cons is t s  of a 65-foot 

The chamber can 

In  addi t ion t o  the  chambers, t h e  f a c i l i t y  includes vacuum 

Man-rating a simulation f a c i l i t y  adds s i g n i f i c a n t l y  t o  i t s  can- 

p lex i ty  and cost  requir ing personnel air locks,  an emergency recom- 

pression system, an environmental l i f e  support system, visual, audi tory,  

and e lec t ronic  monitoring systems, and medical f a c i l i t i e s .  

The Aerospace Research and Testing Committee of t h e  Aerospace 

Indus t r ies  Association has recent ly  published ARTC Report No. ARTC-41, 

"Recommended Safety Prac t ices  f o r  Manned Space Chambers"(4). 

repor t  presents  recommended s a f e t y  prac t ices  f o r  t h e  construction and 

operat ion of manned space chambers BS developed by AIA Ember companies. 

Medical problems of man-rating a space environment simulator include 

hypoxia, rapid o r  explosive decompression, rapid recompression, dys- 

barism, l o g i s t i c s ,  and accidents caused by cryogenic slippage o r  con- 

This 

t a c t  with thermal devices or  cryogenic surfaces ,  and exposure t o  fire (51 

fkPoxia is  the s t a t e  of oxygen deficiency r e s u l t i n g  fra t h e  re -  

duced p a r t i a l  pressure of oxygen i n  inspired air at simulated a l t i t u d e s .  

Because insp i red  air is quickly sa tura ted  with water vapor at body 

temperature, t h e  p a r t i a l  pressure of oxygen in  the  trachea is reduced 
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from 160 nrm Hg t o  149 mm H g  under normal sea l eve l  conditions.  

t h e  reduction of barometric pressure a t  simulated a l t i t u d e s ,  t he  

water vapor, being dependent only on body temperature and not t o t a l  

pressure,  encroaches upon the other  gases present u n t i l  at  an ambient 

pressure of 47 mm Hg (63,000 ft. equivalent)  t he re  i s  theo re t i ca l ly  

room for only water vapor i n  the  respiratory t r a c t .  

With 

The breathing of 100% oxygen at  34,000 f e e t  i s  the  equivalent of 

breathing room air  at  sea l eve l .  

37,000 feet and 40,000 f e e t  simulated a l t i t u d e ,  t he  concentration of 

oxygen i n  t h e  blood i s  t he  same as 5,000 f ee t  and 10,OO fee t  a l t i t ude .  

Above 40,000 f e e t ,  breathing 100% oxygen under pos i t i ve  pressure up 

t o  30 mm Hg can raise man's physiological a l t i t u d e  

feet. Higher posi t ive pressures are not e f f ec t ive  i n  r a i s ing  t h e  

ce i l i ng  because of theincreasingreduct ion of p a r t i a l  pressure of  O2 

and t h e  meahanical effects  of t h e  pos i t i ve  pressure on venous r e tu rn  

and cardiac output. Therefore, i n  order t o  perform at higher a l t i t u d e s  

i n  a space simulatolr, man m u s t  be enclosed i n  a pressure vessel ,  e i t h e r  

a capsule or pressure s u i t .  

When breathing 100% oxygen, a t  

Ce i l ing to  50,000 

Fai lure  of t h e  space suit or  pressurized vessels i n  t h e  simulator 

w i l l  result i n  a rapid decompression a f f ec t ing  t h e  absolute pressure 

i n  the  lungs within fract ions of a second. Depending on the  s i z e  of 

t h e  perforat ion and the pressure d i f f e r e n t i a l ,  t h i s  sudden decompress- 

ion may reach violent  and explosive-like proportions.  The e f f e c t s  on 

t h e  body of decompression are the  p o s s i b i l i t y  of  being physical ly  blown 

through or against  the opening and in t e rna l  trauma by t h e  sudden 



expansion of gas i n  the  bo@, especial ly  the  lungs. 

after t h e  decompression are the  r e s u l t  of acute hypoxia and, at the 

lower barometric pressures,  t h e  formation of water vapor bubbles i n  

Secondary e f f e c t s  

t h e  blood and other body f l u i d s  and t i s sues .  

(breath-holding, swallowing, closed g l o t t i s  1, severe and even f a t a l  

damage may result during r e l a t ive ly  slow decompressions of one second 

or longer.  With the  airway closed, at  t h e  end of t h e  normal exhalation, 

a decompression f r o m  sea  l e v e l  t o  30,000 f ee t  a l t i t u d e  may r e s u l t  i n  

dangerously high intrapulmonic pressures.  When t h e  lungs and thorax 

are expanded by r e l a t i v e l y  static-intrapulmonic pressures of  more than 

80 mm Hg, air  bubbles a re  ac tua l ly  forced i n t o  t h e  pleural  spaces and 

can r e s u l t  i n  generalized a i r  embolism t o  the  brain.  

With closed airways 

Unless adequate pressurized garments are  immediately ac t iva t ed  

o r  recompression t o  a lower a l t i t u d e  is i n i t i a t e d  promptly, after 

sudden decompression a l t i t u d e s  i n  excess of 63,000 feet (47 mm a), 
ser ious cardiopulmonary and neurologic damage, and even f a t a l  r e s u l t s ,  

may occur i f  t h e  exposure i s  prolonged f o r  much more than one t o  two 

minutes. 

feet ,  l o s s  of consciousness is  unavoidable i f  t h e  exposure t i m e  be- 

fo re  recompression exceeds > t o  6 seconds. 

Following r ap id  decompressions t o  a l t i t u d e s  above 52,000 

Rapid recompression i s  a necessi ty  t o  rescue a man after sudden 

decompression during t e s t i n g  of a space capsule or  space s u i t .  

i n i t i a l  concern during recompression is t h e  b l a s t ,  noise,  vibraticm, 

and thermal e f f e c t s  from t h e  inrush of  air at  so;ic velocity.  

b l a s t  e f f e c t  on' the m a n  is of minor consideration compared v i t h  t h e  

hurl ing of t h e  m a n  against  t h e  i n t e r n a l  s t ruc tu re  of the simulator,  

O f  

Direct 
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or from f ly ing  equipment and debris.  

e f f ec t  m u s t  not exceed the acute tolerance l eve l s  f o r  man. 

Noise, vibrat ion,  and thermal 

The required speed f o r  emergency recompression i s  not known. 

Animal s tudies  being conducted under the  NASA sponsorship suggest 

t h a t  exposures of 90-120 seconds at 100,000 f ee t  may be to l e ra t ed  

with full physiological recovery(6).  

rate should be able t o  re turn the  subject t o  a minimum a l t i t u d e  of 

40,000 f e e t  and assistance avai lable  from a "buddy" with adequate 

means of del iver ing oxygen t o  t h e  subject within 15 seconds because 

of t h e  p o s s i b i l i t y  of unavoidable unconsciousness i n  t h a t ,  time period. 

Further recompression at  a r a t e  of 1 psi /sec.  may be performed without 

incident except f o r  minor a e r o t i t i s .  

I f  possible ,  t h e  recompression 

Decompression sickness may occur on exposure t o  a l t i t u d e s  above 

17,000 f e e t .  The basic  underlying pathologic process i n  decompress- 

ion sickness or "bends" i s  the  loca l  formation of bubbles i n  body 

t i s s u e s ,  both intravascular  and extravascular.  

tans vary widely i n  t h e i r  nature and t h e i r  i n t e n s i t y ,  depending on 

the  locat ion and s i z e  of these bubbles. 

t i s s u e  whenever the  surrounding atmospheric pressure i s  reduced t o  

the  point where t h e r e  is  a "steep" pressure gradient dr iving the  gas 

out of  solut ion.  Under such conditions,  t he  r a t e  of diffusion of t he  

gas from t h e  t i s s u e s  into t h e  expired air v i a  the  blood and the  lungs 

i s  too  slow t o  cope w i t h  t h e  volume of nitrogen evolved. 

gas comes out of solution loca l ly  i n  t h e  t i s s u e s  as bubbles. These 

bubbles usually result in  deep and poorly local ized pain,  most commonly 

The r e su l t i ng  symp- 

Bubbles tend t o  form i n  any 

Hence, t he  



i n  the h e e s  and shoulders. Pruritus, hot  and cold sensations, 

and a type of formication, as though a s m a l l  compact colony of an ts  

were moving over the  surface of t h e  b o w ,  may occur. 

Respiratory symptoms ( the  "chokes") a r e  characterized by sub- 

s t e r n a l  d i s t r e s s ,  with a burning or gnawing or lancinat ing pain, and 

are  aggravated by attempts t o  take  a deep breath. 

probably the  r e s u l t  of t h e  c i rcu la t ion  of mil iary gas emboli in t h e  

pulmonary c i rcu la t ion .  

may l ead  t o  secondary reac t ions ,  such as p a l l o r ,  sweating, fa in t ing ,  

and unconsciousness. 

and hypertension and, i f  prolonged, may l ead  t o  secondary shock from 

hemoconcentration. Neurologic symptoms, including temporary para lys i s ,  

may occur, but most common are  visual dis turbances,  such as blur r ing  

of v i s ion ,  diplopia ,  bl indness ,  and v i s u a l  f i e l d  defects .  

"Chokes" i s  

As i n  t h e  case of  "bends" severe "Chokes" 

Syncope may occur accompanied by bradycardia 

There is a wide individual  var ia t ion  i n  suscept ib i l i ty  t o  t h e  

"bends". "Bends" does not occur on ascents  from sea leve l  t o  below 

17,000 f e e t ,  but it occurs with increasing frequency at higher a l t i tudes .  

Obesity, physiological  aging, and general poor pbysical  condition in- 

crease t h e  incidence of "bends". Exercise while a t  a l t i t u d e  i s  an 

important f a c t o r  i n  lowering t h e  threshold a l t i t u d e  for t h e  dewloppent 

of "bends". 

decreases t h e  time of onset of symptoms, and grea t ly  reduces t h e  

number of individuals  who w i l l  be protected by symptom regression. 

This is important operat ional ly  considering t h e  metabolic load re- 

quired t o  perform ef fec t ive ly  when encumbered i n  a space s u i t .  

It increases  both t h e  incidence and sever i ty  of  "bends", 
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Breathing 100% 0 a t  ground l e v e l  p r i o r  t o  a simulated f l i g h t  

(denitrogenation) i s  the most e f f i c i e n t  means of removing nitrogen 

from t h e  body and reducing the  incidence of "bends". 

"bends" during 2 hours a t  38,000 fee t  i s  62 a f t e r  sea l e v e l  denitro- 

genation. The prac t ica l  advantage of prolonged periods of denitro- 

genation is  unknown, and when heavy exercise  i s  car r ied  out even af'ter 

4 hours of denitrogenation, a high incidence (18%) of %ends" may 

s t i l l  occur. Studies a re  current ly  being conducted a t  t h e  USAF School 

of Aviation Medicine t o  determine t h e  denitrogenation required t o  per- 

m i t  sa fe  extravehicular operations i n  a 3.5 p s i  space s u i t  . 

2 

The incidence Of 

(7)  

Recent experience i n  Republic simulation experiments has shown 

a high incidence (50%) of mild "bends" and one case of ear ly  neu- 

rocirculatory collapse on ascent t o  33,000 fee t  even a f t e r  2-1/2 

t o  3 hours of denitrogenation. This high incidence w a s  a t t r i b u t e d  t o  

cold exposure during the denitrogenation period i n  t h e  personnel entry 

lock which was being flushed with 100% l i q u i d  oxygen. 

Medical and l o g i s t i c  problems of prolonged chamber missions in- 

volve considerations of toxicology, personal hygiene end subsis tence,  

and psychological factors .  

increase evaporation of v o l a t i l e  substances. 

may generate t o x i c  substances such as ozone or carbon monoxide. 

Toluene and benzene are const i tuents  of cer ta in  p l a s t i c s  which may 

break down i n  an increased oxygen pressure environment. Supply of 

food and water and waste removal or  s torage f o r  multi-crew members 

should be provided a t  the s t a r t ,  or procedures and f a c i l i t i e s  should 

be establ ished for  the  t ransfezr ing  of these mater ia ls  without 

Reduced barometric pressure will l i k e l y  

Functioning equipment 
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in te r rupt ing  t h e  t e s t  program. Personal hygiene i s  important for can- 

f o r t  and prevention of infect ion.  

i n  one of t h e  t e s t  subjects  may spread and cause an expensive test 

program t o  be terminated .before t e s t  object ives  a re  achieved. Psy- 

chological s t r e s s  fac tors  of confinement, i s o l a t i o n ,  and hazardous 

surroundings should be evaluated and considered i n  determining t h e  

overa l l  medical well-being of the  t e s t  subjects .  

An unsuspected contagious disease 

Industr ia l - type accidents may occur within t h e  space simulator 

because of t h e  presence of extreme hot  and cold surfaces ,  he ights ,  

narrow passageways, and heavy t e s t  equipment. The f i r e  hazard i n  t h e  

presence of 100% oxygen is  of r e a l  concern as  demonstrated by severa l  

unfortunate f i r e s  i n  t h e  Gemini atmosphere va l ida t ion  program and other  

simulation s tudies .  

In addi t ion t o  t h e  special ized f a c i l i t i e s  and r e l i a b i l i t y  consider- 

a t ions  required for man-rating a space simulator, chamber personnel and 

auxiliary s t a f f  must be experienced i n  operat ional  and emergency pro- 

cedures t o  ensure t h e  s a f e t y  of the  chamber occupants. 

automatic chamber cont ro ls  should be provided with manual overr ides .  

"Fa i l  safe"  devices may not be s a f e  i f  double f a i l u r e s  occur. Auto- 

matic versus manual i n i t i a t i o n  of t h e  emergency recanpression system 

should be carefu l ly  evaluated f o r  each s p e c i f i c  t e s t  program- Inadvert- 

e n t  automatic i n i t i a t i o n  of t h e  emergency recompression system is  cos t ly  

i n  terms of test schedules, money, and t h e  well-being and morale of t e s t  

subjec ts .  Automatic systems which a r e  designed t o  operate sa fe ly  a t  

normal operat ing conditions may be unsafe during t r a n s i t i o n  phases. 

Essent ia l  
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An incident occurred with Republic space simulator during the  Gemini 

atmosphere val idat ion program which i l l u s t r a t e s  this point .  

EMERGENCY FECOMPRESSION I N C I D E N T  

The Republic space simulator i s  a s t a i n l e s s  s t e e l  cyl inder  13 f e e t  

i n  diameter and 30 feet long (Fig. 4 ) .  

a main chamber 18 f e e t  long and an entry lock 8 f ee t  long. 

chambers are coMected by a personnel door, and another personnel 

door provides access t o  the entry lock from t he  laboratory f loo r .  

Observation of t h e  subjects  within t h e  chamber is accomplished through 

seven 24-inch diameter viewing ports .  

It is divided i n t o  t w o  sect ions:  

The two 

Three control  consoles are  provided f o r  t h e  operation of  t h e  

f a c i l i t y .  The main console consis ts  of a ccrmmunications segment, an 

alarm and schematic segment, an atmosphere supply segment and two pre- 

ssure control  segments - one f o r  the main chamber and one for t he  entry 

lock. 

of t h e  pumping system are provided immediately adjacent t o  chamber 

viewing ports  for t h e  entry lock and f o r  t h e  main chamber. A schematic 

display (Fig.  5 )  i s  presented on the  main console. Each component i s  

represented by an i l luminated ind ica to r ,  t he  color  of which ind ica t e s  

the status of t h e  component. Blue indicates  closed or inoperative,  

white indicates  changing, amber ind ica t e s  operating, and red indicates  

f a i lu re .  

Smaller control  consoles which operate t h e  various components' 

The components on the left  s ide  of t h e  schematic diagram represent 

t h e  emergency recompression system. The oval area on the  left represents 
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a recompression a i r  s torage tank. 

chamber through a s i l e n c e r  and a f rangible  disc  which can be pierced 

by a spring-loaded spear. The tank is connected t o  t h e  entry lock 

through a s i l e n c e r  and a c h d k  valve and t o  t h e  ambient atmosphere 

through redundant recompression vent valves and a l a rger  s i l e n c e r .  

This tank i s  connected t o  the  main 

Normal operation of this sytem can bes t  be described by consid- 

e r ing  a t y p i c a l  t e s t  s i tua t ion .  A subject  is su i ted  in  a full pressure 

suit occupying the  main chamber which i s  a t  high vacuum. The entry 

lock pressure i s  at t h e  equivalent of 27,000 f e e t  a l t i t u d e ,  and is  

occupied by an observer i n  " s h i r t  sleeves" equipped w i t h  an oxygen 

mask. Upon i n i t i a t i o n  of operation of t h e  emergency recompression 

system, e i t h e r  automatically or  by pushing any one of seven "panic" 

buttons loca ted  around t h e  chamber, t h e  spring-loaded spew pierces  

t h e  f rangib le  d i s c  and compressed air from t h e  recompression tank 

flows i n t o  t h e  main chamber. 

tank i s  equal t o  t h a t  of t h e  entry lock,  t h e  check valve opens and t h e  

t h r e e  vessels  reach a common pressure as a i r  NSheS f romthe  entry lock 

i n t o  t h e  main chamber. 

i n  5-1/2 seconds. 

chamber and t h e  entry lock may be opened by the  ins ide  observer, who 

can then e n t e r  the main chamber. The two recompression vent valves, 

Whose operat ion is control led by a cam-operated programmer, allow 

ambient atmosphere t o  en ter  the  system and recompress the chamber t o  

sea  l e v e l  i n  an addi t iona l  16 seconds. 

When t h e  pressure i n  t h e  recompression 

A n  equivalent a l t i t u d e  o f  40,000 f e e t  is reached 

A t  t h i s  time t h e  personnel door between t h e  main 



During t h e  Gemini  atmosphere v d i d a t i o n  program, an emergency 

recompression occurred because of a momentary loss of  e l e c t r i c a l  

parer  which actuated the emergency recompression system. Six sub- 

j e c t s  has just been locked i n  the  personnel entry lock and the  main 

chamber w a s  under a vacuum of 10 

f i l l i n g  w i t h '  oxygen t o  e s t ab l i sh  a nitrogen-free environment of 5 

p s i  pure oxygen. Normally, an observer i n  the  entry lock would have 

been decompressed from 27,000 t o  h0,OOO and then returned t o  sea l eve l  

at  . 7  psi /sec.  

compressed t o  25,000 f e e t  i n  7 seconds qt a maximum ascent rate of  

5,000 f ee t / s ec . ,  remained a t  25,000 f e e t  f o r  4 seconds an3 then were 

recompressed t o  sea level  in 7.5 seconds with a maximum r a t e  of de- 

scent of 7,000 feet/sec.  (Fig. 6 ) .  This incident r e su l t ed  i n  term- 

inat ion of t h e  subjects '  pa r t i c ipa t ion  i n  the  experiment. Five of 

t h e  s i x  subjects  had b i l a t e r a l  aero-ot i t is  including several with 

in j ec t ed  blood vessels on the pos t e r io r  pharynx and inner aspects of  

t h e  external ear canal. 

a i r  rushing out of his lungs during t h e  episode. A l l  subjects  made 

an uneventful recovery with conservative treatment.  

-4 
Torr i n  preparation f o r  back- 

These subjects  were at sea level i n i t i a l l y ,  were de- 

Only one subject  reported a sensation of 

An a l t e r a t i o n  i n  procedure (back-f i l l ing t h e  main chamber with 

oxygen before occupying t h e  entry lock)  or  increasing t h e  reley time 

before loss  of  e l e c t r i c a l  power would actuate  t h e  emergency r ecm-  

pression system could have prevented t h i s  incidence. However, i n  

future tes t  programs requiFing the main chamber t o  be under high 

vacuum and t h e  rotat ion of inside observers t o  minimize f a t igue  the  



entry lock would again be a t  sea l e v e l  f o r  a short  time during t h e  

t r a n s f e r  procedure. 

ATMOSPHERE SEmCTIoN 

i 

The se lec t ion  of t h e  cabin atmosphere i s  one of t h e  most c r i t i c a l  

environmental fac tors  i n  t h e  design of manned space vehicles. 

sea l e v e l  "air" environment and one-third atmosphere oxygen environ- 

ment represent  two current  approaches which have appaxently been 

s a t i s f a c t o r y  f o r  current missions. Other combinations and pressures  

may be useful  fo r  future  space missions, but w i l l  require extensive 

ground-based experiments and mission simulation p r i o r  t o  t h e  use i n  

space f l i g h t .  

A near 

The most important s ing le  const i tuent  in t h e  gaseous atmospheres 

is oxygen. 

i . e . ,  a lveolar  partial pressure,  may be calculated f romthe  following 

equation: 

I n  a pure O2 environment, t h e  oxygen avai lable  t o  t h e  body; 

where PB is t h e  b a r m e t e r  pressure,  PA is the  alveolar p a r t i a l  

c02 

pressure of carbon dioxide, and P is  t h e  a lveolar  p a r t i a l  pressure 

fk20 

of water. Assuming a normal P of 100 nrm Hg, 
Ao2 

PB = 100 + 40 + 47 = 187 mm Hg. 
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Hence, t h i s  should be considered the  minimum t o t a l  pressure f o r  de- 

sign purposes i f  no ine r t  gas is  present i n  t h e  atmosphere. 

No minimum t o t a l  pressure above t h e  hypoxic l eve l  has been 

establ ished f o r  space missions from two t o  twelve months. 

t o  10,000 feet a l t i t u d e  equivalent t o t a l  pressures should have minimal 

pressure e f f e c t s ,  but  may not be p r a c t i c a l  f o r  design reasons and 

ce r t a in ly  with a s ing le  gas atmosphere would resul t  i n  oxygen tox ic i ty .  

Sea l e v e l  

The explosiveness of a decompression or, under l e s s  catastrophic  

conditions,  t h e  leak r a t e ,  is d i r e c t l y  r e l a t ed  t o  cabin pressure,  It 

has been demonstrated that  with higher pressures and a small penetrat ion,  

e f f ec t ing  a decompression over a number of seconds o r  minutes, t he re  

is a longer period of useful consciousness f o r  emergency action such 

&s s u i t  donning"). 

occurring i n  f r ac t ions  of a second up t o  bne or two seconds, t h e  dangers 

of damage t o  t h e  crew due t o  r e l a t i v e  gas expansion i n  the  gas f i l l e d  

organs i s  considerably greater  with higher pressures.  Dysbarism w i l l  

be a negl igible  problem with a 100% oxygen system. 

pression of  t he  capsule a t  launch, "Bends" can be averted with denitro- 

genation f o r  t h ree  t o  four hours p r i o r  t o  launch. With two gas systems 

decompression t o  1 /2  t he  i n i t i a l  cabin pressure is considered within 

sa fe  limits. 

However, i n  t he  event of a major decompression 

Even with decom- 

Specif ic  experiments conducted t o  determine t h e  preoxygenation 

and equ i l ib ra t ion  necessary t o  avoid "bends" following decompression 

from 1/2 atmosphere (50% oxygen, 50% ni t rogen)  t o  1 f b  atmosphere have 

been conducted by the  U. S. Navy'9). 

of preoxygenation at sea l eve l  p r io r  t o  such a decompression w i l l  

These s tud ie s  indicate  th ree  hours 



ef fec t ive ly  prevent "bends". It w a s  a l s o  noted t h a t  without pre- 

oxygenation 18 hours i n  t h e  1 /2  atmosphere environment described, 

provided adequate denitrogenation from t h e  previous s e a  leve l  a i r  

environment t o  decompress t o  1 / 4  atmosphere safely.  

binat ion of two hours denitrogenation a t  sea l e v e l  followed by 12 hours 

at 1/2 atmosphere provided similar protect ion.  

Final ly ,  a com- 

Although any atmosphere capable of supporting l i f e  will support 

combustion, t h e  combustion r a t e  increased rapidly with increased oxygen 

p a r t i a l  pressure,  p a r t i c u l a r l y  between 150 and 250 rn Hg, and is  appre- 

c iab ly  decreased with the  addi t ion of an i n e r t  gas. 

t h e  f i r e  hazard is  of paramount importance i n  view of the small l i v i n g  

space and l imi ted  escape opportuni t ies  and f i r e  f i g h t i n g  equipment 

possible  i n  space vehicles .  "he magnitude of f i r e  hazard has been 

assessed quant i ta t ive ly  by Parker and Ekberg, who performed laboratory 

s tudies  t o  determine t o  what degree burning w a s  accelerated in  various 

gas compositions and pressure( lO) .  Figure 7,  plo t ted  from t h e i r  da ta ,  

compares t h e  burning time of paper s t r i p s  as a funct ion of t h e  p a r t i a l  

pressures  of oxygen. 

complete combustion would occur over twice 8s f a s t  at 1 / 2  atmosphere 

(50% oxygen - 50% ni t rogen)  compared t o  s e a  l e v e l a i r  and t k e e  times as 

f a s t  i n  pure 0 

Consideration of 

It appears t h a t  f o r  a given quantity of mater ia l ,  

a t  1 /3  atmosphere. 2 

b l s t a d  determined t h e  difference i n  ign i t ion  temperature (o r  t ime) ,  

burning r a t e ,  and t h e  per  cent of t h e  mater ia l  sample consumed on t e n  

d i f f e r e n t  mater ia l s  considered for use i n  space vehicles. 

s tud ies  were conducted i n  air at  12.6 p s i  (650 nun Hg - 4,200 f ee t  

a l t i t u d e )  and 100% oxygen at 5 ps i .  The mater ia l  was igni ted by a c o i l  

Comparative 
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vhich reached a temperature over 8OO0C i n  100 seconds. 

(Fig.  8) demonstrated that  t he  samples took only two-thirds as long 

to i g n i t e  i n  oxygen (range 5048% as long) ,  indicat ing a subs t an t i a l  

difference i n  temperature required f o r  ignition.. 

mately 2-1/2 times as long (Fig.  9)  and consumed three times as much 

of t h e  t o t a l  sample('l) (Fig.  10 ) .  The f i r e  hazard i s  estimated t o  

be 2-4 times greater  at 5 p s i  pure oxygen than a t  a 7.0 p s i  50-50 

oxygen-nitrogen atmospheric mixture . 

These s tud ie s  

They burned approxi- 

(12) 

Experience during the Gemini val idat ion program suggests t h a t  it 

w i l l  be extremely d i f f i c u l t ,  i f  not impossible, t o  extinguish a f i r e  

i n  a 5 p s i  pure Q2 environment by usual  means. 

space vehicles would allow f o r  emergency decompression as a means of 

extinguishing t h e  inferno and would afford protect ion afier meteoroid 

penetration. 

during meteoroid puncture with increasing oxygen p a r t i a l  pressure,  and 

would probably be catastrophic i n  a pure oxygen environment. 

Compartmentation of 

Flash blindness,  burning, and over pressure are increased 

Parker and Ekberg''') considered the  physiological,  physical ,  

engineering, and operational aspects i n  recanmending an atmosphere 

for ea r ly  manned o r b i t a l  space s t a t i o n s  containing a p a r t i a l  pressure 

of oxygen between 160-175 mm Hg and a t o t a l  pressure between 350-380 

m Hg with nitrogen as the di luent  gas. 

OXYGEN TOXICITY 

Since i t s  discovery by P r i e s t l y  i n  1775, t he re  has been an intense 

i n t e r e s t  i n  t h e  physiological e f f ec t s  of pure oxygen and the re  has a l s o  



been a grea t  deal  o* disagreement and d i s p a r i t y  among the inves t iga tors ,  

as is evident from t h e  ava i lab le  experimental data concerning the  e f f e c t s  

of  pure oxygen. 

whatever among c l i n i c a l  inves t iga tors  concerning the harmful e f f e c t s  

of oxygen on man.” 

To quote Comroe (1945)(13), “there  is no agreement 

Studies of t h e  e f f e c t s  of oxygen on man and animals can be divided 

general ly  i n t o  those which invest igated:  (1) pressures greater  than 

one atmosphere, (2) pressures of  one atmosphere, and (3 )  pressures of 

less than one atmosphere. 

g r e a t e r  than atmospheric were i n i t i a t e d  by Paul Bert(14) in  1847 and 

have been s tudied  by Haldane(15) and, more recent ly ,  Behnke(16) among 

others .  

with convulsions and degth occurring as a function of a s u f f i c i e n t l y  

e levated p a r t i a l  pressure of oxygen. 

The e f f e c t s  of oxygen under pressures 

The primary e f f e c t s  appear t o  be on the  c e n t r a l  nervous system 

Many inves t iga tors  have s tudied the  e f f e c t s  of varying percen- 

tages  of oxygen at a t o t a l  pressure of one atmosphere on both animals 

and man. These s tudies  general ly  indicated t h a t  p a r t i a l  pressures of 

oxygen over 455 t o  460 mm Hg a r e  detr imental  t o  most organisms as 

a funct ion of time. Smith(17) i n  1899, subjected b i r d s ,  mice, r a t s ,  

and guinea pigs  t o  532 t o  608 mm Hg of oxygen i n  one atmosphere and 

determined t h a t  t h i s  breathing gas mixture was l e t h a l  a f t e r  four  days, 

producinghyperemia i n  the  lungs and other  o r g y s .  Stadie ,  Riggs, and 

Haugaard(18) and Bean(19) had similar r e s u l t s  when they subjected 

animals t o  similar conditions for up t o  one week. 

Becker-Freyseng(21) working with an assortment of f i f t y  mice, rats, 

guinea p igs ,  r a b b i t s ,  c a t s ,  and dogs, exposed t o  608 t o  661 m Hg of 

Clamann(20) and 
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oxygen in one atmosphere for seven days, found severe lung edema i n  

t h e  s a c r i f i c e d  animals. 

show symptoms s imi l a r  t o  those of hypoxia. Becker-Freyseng and Clamann 

subjected themselves t o  684 m Hg of oxygenin one atmosphere t o t a l  

pressure i n  a closed chamber with a volume of kO cubic meters. The 

experiment w a s  discontinued a f t e r  65 hours vecause Becker-Freyseng 

became ill and was vomiting and Clamann w a s  ill. They noted pares- 

t h e s i a  of t he  extremities a f t e r  two days and increased f ee l ings  of 

f a t igue  as t h e  experiment contined. A t r ans i en t  bronchi t is  which 

occurred i n  one of t h e  experimenters disappeared within twenty-four 

hours after t h e  termination of t h e  experiment. 

working with human subjects ,  provided pure oxygen by masks t o  groups 

of young men f o r  periods of twenty-four hours. They found t h a t  8 s  

of t h e  subjects  experienced substernal d i s t r e s s ,  and vi ta l  capacity 

w a s  usually decreased s ignif icant ly .  

veloped nasa l  congestion or coryza during, or shor t ly  after, the  twenty- 

four hour experiment. Conjunctival i r r i t a t i o n  and ear discomfort (aero- 

o t i t i s )  occurred i n  about one-fourth of t h e  subjects .  

t h a t  t h e  low tension of nitrogen, r a the r  than t h e  increased oxygen, 

might account for t h e  observations, t hese  inves t iga t e r s  placed s i x  

men i n  a low pressure chamber a t  a simulated a l t i t u d e  of 18,000 feet 

(380 mm Hg) and provided 100% oxygen by masks €or twenty-four hours with 

no occurrence of t h e  respiratory symptoms. Canroe thus  assumed t h a t  t h e  

high p02, r a t h e r  than a low pN2, accounted for t h e  symptoms. 

and Eiarach(22) found no indicat ion of pulmonary i r r i t a t i o n  when they 

Before t h e  animals died,  they appeared t o  

Comroe et  al(13), 

Almost ha l f  of t h e  subjects  de- 

Recognizing 

Richards 
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s tudied the  e f f e c t s  on two men of 343 mm Hg of oxygen i n  one atmos- 

phere f o r  seven days. 

(23) On the  b a s i s  of an a n a l y t i c a l  review, Mullinax and Beischer 

concluded t h a t  oxygen tensions l e s s  than 425 mm Hg can be breathed in- 

d e f i n i t e l y  with no l ikel ihood of physical impairment. 

maintained a subject  i n  a full pressure s u i t  a t  3.5 ps i  pure oxygen f o r  

seventy-two hours with no reduction i? v i t a l  capacity. 

dermat i t i s  and i r r i t a t i o n  of t h e  eyes,  nose, and throa t  were noted. A 

similar study by H a l l  and Kelly(25) subjected two men, one of whom w a s  

i n  a pressure s u i t ,  t o  3.5 ps i  pure oxygen fo r  f ive‘days with no s ig-  

n i f i c a n t  decrease i n  v i t a l  capacity, although some i r r i t a t i o n  of t h e  

conjunctivae, nose, and throa t  occurred. 

Hall and Mart in(2k)  

A pus tu la r  

Michel, Langevin, and subjected s i x  U. S. Navy e n l i s t e d  

men t o  418 mm Hg of oxygen i n  523 mu Hg t o t a l  pressure of atmosphere 

f o r  168 hours (one week). They found some decrease i n  v i t a l  capacity 

i n  two men and an area of probable a t e l e c t a s i s  i n  one subject. Other 

than some substernal  t i g h t n e s s ,  t h e r e  were no marked symptcms noted by 

t h e  subjec ts .  Welch, Morgan, and U l ~ e d a l ( ~ ~ )  s tudied the e f f e c t s  on 

two men i n  a chamber of 150 mm H g  of oxygen i n  a t o t a l  atmosphere of 

380 mm Hg over a thir ty-day .period and 190 mm Hg of oxygen ( t o t a l  

pressure)  over a seventeen-day period. A mild reduction i n  v i t a l  

capaci ty ,  work capaci ty ,  o r t h o s t a t i c  tolerance and increased myo- 

c a r d i a l  i r r i t a b i l i t y ,  and weight loss  occurred i n  both experiments. 

Psychological performance general ly  remained a t  a s tab le  l e v e l .  

Unfortunately, it i s  l i k e l y  t h a t  i n  t h e  great majority of t h e  

reported s tudies  of “pure oxygen” or “100% oxygen”, actual values var ied 
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from as l o w  as 50% when oxygen t e n t s  o r  loose masks were used, t o  

90% i n  prolonged s tudies  not u t i l i z i n g  hermetically sealed chambers. 

Even i n  conventional a l t i t ude  chambers, pure oxygen l eve l  (excluding 

co 

i n f lux  of nitrogen ( a i r ) .  

t he  oxygen experiments performed were without a i r  breathing controls ,  

t he  number of subjects  was frequently very small, and t h e  monitoring 

and control  of t h e  actual  gaseous environment w a s  poor. P r io r  t o  

the Gemini atmospheric validation program, the re  have apparently been 

no s tudies  reported i n  the l i t e r a t u r e  t o  indicate  any experiments 

using p a r t i a l  pressures of oxygen exceeding 258 mm Hg i n  t h e  absence 

of an i n e r t  gas over a p d o n g e d  period. 

and water vapor) a r e  rarely maintained s ince any leak represents an 2 

I n  addi t ion,  Comroe points  out t h a t  many of 

GEMINI ATMOSPHERE VALIDATIOly PROGRAM 

Although no se r ious  impairment of human performance was an t i c ipa t ed  

during the  r e l a t i v e l y  short  f l i g h t s  of t h e  Project  Mercury mission 

(<34 hours) ,  t he  use of a 5 p s i  pure oxygen environment i n  Project 

Gemini or  other  forthcoming man-in-space programs required reasonable 

assurance t h a t  subject ing man t o  such a deviation from h i s  normal gaseous 

atmosphere f o r  a period of two o r  more weeks would not create a se r ious  

hazard. 

e ight  subjects  demonstrated reduced arterial oxygen sa tu ra t ion  immediately 

a f t e r  seventeen days exposure t o  oxygen at a t o t a l  pressure of 190 mm 

Hg without x-ray evidence of pulmonary a t e l e c t a s i s .  

Morgan e t  a1(28) had reported t h a t  two and possibly th ree  of  



(29) Experience i n  high performance j e t  a i r c r a f t  (Emsting , 
L a n g d ~ n ( ~ ' ) ,  and 

and re-entry g loads demonstrated a s i g n i f i c a n t  incidence of ate- 

l e c t a s i s  i n  p i l o t s  while breathing pure oxygen. 

reported F-100 p i l o t s  had reversible  post-f l ight  signs or symptoms of 

a t e l e c t a s i s  r e l a t e d  t o  100% oxygen high g missions. 

and centr i fuge simulation(32) of launch 

Twenty per cent of 

The Gemini atmospheric val idat ion program was an excellent ex- 

ample of the  r o l e  of simulation i n  t h e  development of space technology 

and t h e  cooperation of NASA, USAF', USN, and i n d u s t r i a l  resources. 

Under t h e  sponsorship of t h e  National Aeronautics and Space Adminis- 

t r a t i o n ,  t h e  School of Aviation Medicine, Brooks Air Force Base, Naval 

Air Engineering Center, A i r  Crew Equ ipen t  Laboratory, and Republic 

Aviation exposed human subjects  t o  reduced pressures  of "pure" oxygen 

environment for two-week periods. 

t h e  Space Science Board t o  s e l e c t  and s tandardize procedures t o  ensure 

canparabi l i ty  of r e s u l t s .  Emphasis was  placed on measurements for t h e  

detect ion of a t e l e c t a s i s  and included a r t e r i a l  p02, pC02, pH, O2 c m t e n t s  

and capac i t ies ,  vital capaci ty ,  maximum breathing capaci t ies ,  and chest 

x-rays taken a t  t h e  experimental condition. 

Acceleration Laboratory (w) included t h e  Gemini g prof i le  before 

and a f t e r  t h e  two-week oxygen exposure i n  t h e  ACEL study with t h e  sub- 

j e c t s  being maintained i n  a sealed 5 p s i  pure oxygen cabin during trans- 

por t  from t h e  centr i fuge t o  t h e  a l t i t u d e  simulation f a c i l i t y .  

Fourteen-day experiments i n  the  USAF, School.of Aviation Medicine 

Coordinating meetings vere  held with 

The Aviation Medical 

two-man space cabin simulator were conducted at a simulated a l t i t u d e  of 

27,000 f e e t  (258 mm Hg) t o  determine t h e  physiological e f f e c t s  of this 
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environment with emphasis on pulmonary s tudies(33) .  The a r t e r i a l  

p02, a lveolar  p02, estimated venous t o  a r t e r i a l  shunt, and chest x- 

rays were reported within physiological limits. A 2.9% decrease i n  

v i t a l  capacity was not considered ind ica t ive  of a t e l e c t a s i s .  There 

was a s igni f icant  s l i g h t  drop i n  hematocrit i n  a l l  the  subjects .  

subject had a pronounced drop from a pre-experiment high of 49 t o  38%. 

Post-runfindings on t h i s  subject  indicated a s l i g h t  anisocytosis  and 

hypochromia, s l i g h t  re t iculocytosis  and erythroid hyperplasia which 

w a s  possibly a t t r i b u t e d  t o  t h e  repeated blood sampling. 

included eye i r r i t a t i o n ,  aura l  a t e l e c t a s i s  and substernal  pain. 

Urinalysis during the  run and on follow-up examination 3-4 months 

l a t e r  were e s s e n t i a l l y  negative. 

atmosphere can be well  to le ra ted  fo r  a fourteen-day period". 

One 

Symptomology 

The authors concluded t h a t  "this 

The ACEL study was t o  include t h e  exposure of six aviators  t o  

two peak 7 g loads t o  simulate launch accelerat ion,  chamber confine- 

ment i n  pure oxygen f o r  fourteen days, and a peak of 11.2 g t o  simulate 

re-entry accelerat ion(34) .  

chamber ended the  study prematurely so t h a t  only three  subjects  were 

exposed t o  the  complete t e s t  program, t h e  other  th ree  being exposed 

t o  the  launch acceleration p r o f i l e  and 13,  12,  and 11 days of pure oxygen, 

respect ively.  

fo r  temporary impairment of per ipheral  scotopic vis ion.  

j e c t s  demonstrated a 10-30 fo ld  decrease i n  s e n s i t i v i t y  t o  dark adapt- 

a t ion.  There w a s  no s igni f icant  var ia t ion  i n  v i t a l  capaci ty ,  a r t e r i a l  

p02,  pC02, or  pH o r  x-ray evidence of a t e l e c t a s i s .  

hours elapsed a f t e r  t h e  launch accelerat ion and 20-30 minutes a f t e r  t h e  

re-entry simulation before t h e  chest x-rays were taken. 

The occurrence of a f i r e  with the  a l t i t u d e  

There were no s igni f icant  physiological a l t e r a t i o n s  except 

Several sub- 

However, severa l  

Hematological 
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f indings reported were a s igni f icant  decrease in  the average hemoglobin 

and hematocrit values. There was no r i s e  i n  b i l i r u b i n  or urinazy uro- 

bil inogen,  a s l i g h t  r i s e  i n  re t icu locytes ,  and a tendency t o  Wpo- 

chramia and microcytosis. Similar changes were noted i n  two control  

subjec ts  outs ide t h e  chamber. An estimated 700 cc of blood loss drawn 

i n  the  various blood samples w a s  considered t h e  main et iology fo r  these  

findings. Microscopic cy l indrur ia  was not noted during the experi- 

mental exposure. Renal function w a s  normal. The authors concluded 

t h a t  "no evidence w a s  obtained t o  ind ica te  t h a t  any physiological 

detriment of operat ional  s ignif icance would be suffered by astronauts  

exposed t o  these  conditions." 

In  t h e  Republic s t u w ,  a broad approach t o  the  problems associated 

with pure oxygen a t  various barometric pressures i n  t h e  absence of an 

i n e r t  gas was ' Four groups of s i x  men each vere se lec ted  

t o  l i v e  i n  an a l t i t u d e  chamber f o r  a two-week period. 

groups l i v e d  i n  an oxygen environment at t o t a l  pressures of 3.8 p s i ,  

5.0 p s i ,  or  7 .4  p s i ,  and a fourth group served as a control i n  a sea  

l e v e l  (14.7 p s i  ) a i r  environment. 

hematological, biochemical, microbiological, and psychological s tud ies  

were conducted on all subjects(Fig.  11). 

Three of t h e  

Detai led medical, physiological, 

A small t r a n s f e r  lock w a s  added t o  Republic's space simulator t o  

provide f o r  t h e  passage i n t o  and out of t h e  chamber of foods, waste, 

suppl ies ,  and physiological  specimens (Fig. 12). The larger  compart- 

ments of t h e  chamber provided a means of i s o l a t i n g  t h e  subject in t h e  

event of f i r e .  

and source of water, wherever possible  materials were screened f o r  use 

I n  addi t ion t o  i n t e r i o r  portable  f i r e  extinguishers 
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i n  t h e  chamber t o  reduce t h e  fire hazard by f i r s t  subject ing them t o  a 

combustion t e s t  i n  a 5 psia  100% oxygen b e l l  jar. It was found t h a t  

"smooth" asbestos burned f a i r l y  w e l l  because of t h e  coating on the  

asbestos. 

b r i l l i a n t l y  because of the all-weather paraf f in  coating. 

Sane high temperature all-weather wiring a l s o  burned 

The l i f e  support system was provided by continuously flushing 

t h e  chamber with oxygen while t h e  pumping system of t h e  f a c i l i t y  was 

used t o  maintain t h e  simulated a l t i t u d e .  Six hundred t o  seven hundred 

l i t e r s  of l i q u i d  oxygen per day were forced through a cold panel near 

t h e  c e i l i n g  of t h e  chamber and t h e  oxygen, n w  gaseous, was introduced 

i n t o  t h e  chamber. In order t o  i n o w  t h e  pur i ty  of t h e  l i q u i d  oxygen 

used, two samples were analyzed (Fig. 13 ) .  

l e v e l s  i n  t h e  sea l e v e l  cont ro l ,  5, 7.4 and 3.8 p s i  runs fo r  CO 

2.3, 1.1, 1.6 and .7 5 H g ;  fo r  N2 608, .33, .49, and .55 5 Hg; for 

water vapor 10, 24, 22, ah 21 lrrm Hg, respect ively.  

The mean environmental 

were 2 

No deter iora t ion  of general mental, sensory, or motor perfow- 

ance was demonstrated i n  any of t h e  experimental runs. 

substernal  d i scanfor t ,  coughing, and eye i r r i t a t i o n  caused minor 

in te rmi t ten t  d i f f i c u l t i e s .  Biochemical and microbiological exam- 

ina t ions  were within normal l i m i t s ,  although some s h i f t  i n  t h e  balance 

of skin and f e c a l  microflora was observed. 

Aero-o t i t i s ,  

An occasional t r a c e  of protein and cas t s  i n  t h e  ur inary sediment 

occurred i n  many of t h e  subjects  during the  a l t i t u d e  runs which per- 

s i s t e d  in te rmi t ten t ly  for  severa l  months post-run. 

o ther  abnormal signs or symptams of rena l  damage during t h e  experimental 

runs. 

There were no 

The urinary output was good and blood urea ni t rogen leve ls  
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remained normal. 

The et iology of the  r e n a l  changes and t h e i r  s ignif icance is 

unknown. Clin ica l  thermometers and s l i n g  psychometers were broken 

during t h e  f i r s t  (sea l e v e l )  and last (3.8 p s i )  chamber run. 

runs, t h e  highly polished s t a i n l e s s  s t e e l  surfaces  of the chamber 

were carefu l ly  cleaned, including t h e  area beneath t h e  floorboards. 

This cleaning should have removed any possible accumulation of mer-  

cury i n  t h e  chamber. Addit ional ly ,  t h e  f lushing system resu l ted  i n  

oxygen en ter ing  at shoulder height and exhasuting out the bottom of 

t h e  chamber below the  floorboards. Since heavy mercury vapor would 

tend t o  co l lec t  below t h e  floorboards, it should have been flushed 

out of t h e  chamber instead of being inhaled by t h e  subjects. 

'Itrenty-four hour ur ine samples co l lec ted  during the  t h i r t e e n t h  

Between 

day of t h e  7.4 p s i 8  run, which had been kept i n  cold s torage,  were 

analyzed for mercury by t h e  U. S. Public Health Service,  Cincinnat i ,  

Ohio using an ion-exchange method s e n s i t i v e  t o  . 3  microgram/liter. 

The average concentration of t h e  s i x  subjec ts  was 10.6 micrograms per 

l i t e r  compared t o  normal laboratory values of 2-9 micrograms per  liter. 

Since t h e  ur inary concentration of mercury i s  a good indicator  of t h e  

l e v e l  of mercury exposure, t h e  subjec ts ,  a t  l e a s t  i n  the 7.4 p s i  run, 

were not exposed t o  a s i g n i f i c a n t  l e v e l  of mercury vapor. 

hlmonary function s tudies  including vital  capacity, timed v i t a l  

capaci ty ,  MEC, t o t a l  lung capaci ty ,  and diffusion capacity did not  show 

and s i g n i f i c a n t  changes. 

any signif icant  change Prom expected values. 

t h e  f i f t h  t o  t h e  fourteenth day i n  t h e  7.4 p s i  run dropped fran 20.2 

A r t e r i a l  mean p02, pC02, and pH d id  not show 

The mean 0 content from 2 
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0 
vol  % t o  17.0 vol  % (Table I). 

s ign i f i can t  beyond t h e  0.01 l eve l .  The mean O2 capacity (18.1 vol  

5 )  was grea te r  than the mean O2 content (17.0 vo l  % )  a t  t h e  end of 

t he  7.4 p s i  run i n  the  presence of a mean blood p0 

The low mean O2 content coupled with the l a rge r  mean 0 capacity a t  

the  end of t h e  7.4 p s i  run a re  compatible with t h e  p o s s i b i l i t y  t h a t  

t he re  was  a qua l i t a t ive  change i n  the  red blood c e l l s  or t h e i r  con- 

s t i t u e n t s ,  a f f ec t ing  t h e i r  a b i l i t y  t o  t ransport  oxygen i n  vivo, possibly 

the formation of methemoglobin. 

This difference w a s  found t o  be 

of 266 mm Iig. 2 

2 

The hematological findings presented t h e  most i n t e re s t ing  r e s u l t s  

and were highl ighted by an inadvertent inclusion of a thalassemia t ra i t  

subject (number 25) i n  the 5 p s i a  run. Subject 35 exhibi ted a normal 

prerun hemoglobin, hematocrit, red c e l l  count and c e l l u l a r  morphology 

with only one t a r g e t  c e l l  on h i s  per ipheral  smear. A decrease i n  hem- 

oglobin (15.8 epn % t o  10.5 gm %), red blood c e l l  count, and hematocrit ,  

and an increase ret iculocytosis  (0.6% t o  3.5%) were observed (Fig.  1 4  

and Fig. 1 5 ) .  

chromia and, subsequently, many t a r g e t  c e l l s ,  b i z a r r e  shape and normo- 

b l a s t s  were seen with a more marked va r i a t ion  in  the  red blood c e l l  s i z e  

(Fig.  16) .  

f r a g i l i t y .  

After  the fourth day, s t i pp led  c e l l s  appeared with hypo- 

On e x i t ,  h i s  red blood c e l l s  exhibi ted an increased osmotic 

Subject 35 was hospi ta l ized and followed extensively at  Brookhaven 

National Laboratories,  Upton, New York, where a diagnosis of thalassemia 

trait was  made by electrophoret ic  analysis of h i s  hemoglobin types. 

Although previously undiagnosed, examination of both parents  demonstrated 

* 
See Table I ,  page -XXV-32- 



thalassemia t ra i t  i n  h i s  f a the r .  H i s  mother exhibited normal per- 

centages of hemoglobin types. Subject 35's hemoglobin rose quickly 

post-run t o  12.0 gm % and appears t o  have s t ab i l i zed  between 12 t o  13 

gm % with a 3% re t i cu locy tos i s  and a 5 t o  6 mil l ion r ed  blood c e l l  

count. H i s  morphological p i c tu re ,  now compatible with thalassemia 

t r a i t ,  has remained unchanged. H i s  white blood c e l l  count has re- 

turned t o  a high normal value and t h e  osmotic f r a g i l i t y  of h i s  red 

blood c e l l s  is now decreased from normal which i s  typ ica l  of tha- 

lassemia trait. 

The mechanisms p rec ip i t a t ing  a hemolytic episode i n  a subc l in i ca l  

thalassemic trait subject  on exposure t o  100% oxygen at  5.0 p s i  f o r  

two weeks is  unknown. Astronaut screening u t i l i z i n g  routine hema- 

to log ica l  s tud ie s  would not have eliminated t h i s  subject.  It is 

possible  t h a t  other  sub t l e  hematological defects  may cause similar 

and even more dramatic e f f ec t s .  Hence, astronauts should be given 

comprehensive hematological examinations including ground simulation 

i n  t h e  se l ec t ed  a r t i f i c i a l  atmosphere. 

The change i n  hemoglobin concentration and ret iculocytes  f o r  t h e  

four experiment groups minus the  thalassemia trait subject is shown i n  

Fig. 17 and Fig.  18. The menatological p i c tu re  of t h e  sea l e v e l  control  

group showed no s ign i f i can t  change. 

slight anemia, microcytosis,  increased osmotic f r a g i l i t y  and minimal 

erythroid hyperact ivi ty .  

hemoglobin and a 2.2% re t i cu locy te  count. 

morphological changes i n  t h e  s i z e ,  shape, and s t a in ing  cha rac t e r i s t i c s  

of t h e  red blood c e l l .  

The 5.0 p s i  group demonstrated a 

One subject  had a l o s s  of over 2.0 gm % 

The group demonstrated 



The 7.4 p s i  group exhibi ted a fall (2-3 gm % I  i n  hemoglobin 

concentration during t h e  f i r s t  48 hours, with a r i s e  i n  b i l i r u b i n  and 

urine urobilinogen leve ls .  Reticulocytes occurred on t h e  t h i r d  day 

and pers i s ted  a t  3.0 t o  5.5% (Fig. 19). 

b l a s t s ,  and macrocytosis appeared, indicat ing increased erythro- 

po ies i s .  

examinations. After the  fourth day, the  hemoglobin concentration 

leveled of f  except for  a mean one gram drop on t h e  eleventh day. 

Thereaf ter ,  t h e  hemoglobin l e v e l  rose and the  re t icu locytos is  de- 

creased. 

Normoblasts, macronormo- 

The l a t t e r  was a l so  noted in  t h e  post-run bone marrow 

The hematological p ic ture  of t h e  3.8 ps i8  run subjec ts  resembled 

t h a t  of t h e  5.0 p s i a  run subjec ts ,  except f o r  an unexplained more 

marked re t icu locytos is .  

atmospheres at reduced pressures exhib'ited hematological abnormal- 

i t i e s  some of which pers is ted fo r  many months post-run. The et iology 

of these f indings were considered t o  be due t o  e i t h e r  a high l e v e l  of 

oxygen, t h e  absence of ni t rogen,  an undetected tox icant ,  decreased 

barometric pressure or a combination of these  f a c t o r s .  

f indings a t  7.4 p s i a  have not been dupl icated although t h e  results a t  

5.0 p s i a  a r e  not incompatible with t h e  s tud ies  at t h e  USAF School of 

Aviation Medicine and ACEL. 

All subjec ts  a f t e r  exposure t o  100% oxygen 

To da te ,  t h e  

Consideration was given t o  the  p o s s i b i l i t y  t h a t  increased oxygen 

mey have prec ip i ta ted  a hemolytic process similar t o  a drug induced 

anemia ("oxidative anemia"). Individualhypersuscept ibi l i ty  t o  hemo- 

lysis with primaquine-type drugs Is apparently t h e  r e s u l t  of a de- 

f ic iency of t h e  enzyme glucose-6-phosphate dehydrogenase. 

l i k e  drugs reac t  v i t h  molecular oxygen t o  form redox intermediates 

Primaquine- 
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between oxygen and hemoglobin and other  i n t r a c e l l u l a r  components, there-  

by t ransmit t ing the  high oxidation p o t e n t i a l  of oxygen t o  c e l l u l a r  

components. This w i l l  r e s u l t  i n  oxidative destruct ion of t h e  c e l l u l a r  

components i f  t h e  c e l l  i s  unable t o  increase its reducing capacity. 

The continuous generation of reducing agents i s  brought about by 

glucose metabolism through t h e  pentose phosphate 

6-phosphate dehydrogenase catalyzes  t h e  i n i t i a l  s tep  i n  the pentose 

phosphate pathway of carbohydrate metabolism. 

red c e l l  with i t s  only oxidative apparatus and source of reduced 

triphosphopyridine nucleot ide (TP"). 

involved i n  t h e  reduction of methemoglobin and oxidized glutathione. 

Glucose- 

It provides t h e  mature 

'I", and possibly DPKH, a r e  

Semi-quantit a t i v e  determinations of glucose-&phosphate dehydro- 

genase made on the  ava i lab le  subjects  months post-run indicated a 

s i g n i f i c a n t  number of def ic iencies  which gradually decreased. However, 

t h e r e  were individual  inconsis tencies  which are  unexplained. 

sequent comprehensive hematological s tud ies  a t  USAF School of Aviation 

Medicine on 30-day exposures t o  increased oxygen pressure d id  not support 

an "oxidative anemia" as the  et iology f o r  hematological changes a t  5.0 

p s i a  . 

* 

Sub- 

(37) 

The presence of atmospheric t r a c e  contaminants must be considered 

i n  any sealed capsule experiment. 

t h e  Republic study c e r t a i n l y  decreases t h e  . l ibrhoQd of the presence of 

a s i g n i f i c a n t  contaminant. 

previously described. 

t a i n i n g  toluene and di-isocynate were used fo r  insulat ion of the  

liouid-oxygen cooling pipes. 

The use of continuous f lush ing  during 

The presence of mercury vapor has been 

In addi t ion ,  f resh ly  .prepared lockfoams con- 

R ~ t h ' ~ ~ )  bel ieves  t h a t  these f indings 

* 
See Table 11, page-XXV-32- 



TABLE I. MEAN ARTERIAL VALUES 

7.4 ps i  

&e-Run 5th Dw 
Room A i r  In  Chamber 

p02 (m Hg) 101 254 

O2 CONTEnT (Val/%) 19.2 20.2 

O2 CAPACITY (VollX) 19.6 19.3 

pC02 (m Hg) 38 40 

o2 CONTENT (mM/L) 22.5 23.0 

PH 7.42 7.42 

Post-Rm 
I n  Chamber Room A i r  

266 105 

17.0 16.8 

18.1 - 
40 39 

23.0 22.9 

7.44 7.42 

TABLE 11. GLUCOSE-6-PIIOSPHATE-DMYDROGENASE DEFICIENCY 

POST OXYGEN EXPOSURE 

Subject No. 19-25 Weeks 

31 
32 
33 
35 
36 
37 
42 
43 
44 
45 
46 
52 
54 
56 

Normal Control 
Abnormal Control 

S. = No Sample) 

+ 
+ 

N .  S. - 
+ 
+ - 
+ 
+ - 
+ 
+ - 
+ - 
+ .  

43-49 w e e k s  

N. s. 
N .  S. 

+ - - - 
N. S. - 

- 
N .  S. 

N. S. 

N. S. 

- 
- 
- 
+ 



suggest h i t h e r t o  undefined combinations of t o x i c  factors .  The re -  

la t ionship  between t o x i c i t y  from continuous 

and atmospheric contaminants is  

b io logica l  s ign i f icance  of t h i s  re la t ionship  m u s t  await the  develop- 

ment of  spec i f ic  a n a l y t i c a l  methodology and instrumentation f o r  t h e  

i d e n t i f i c a t i o n  and measurement of the  t r a c e  contaminants f o r  comparison 

with performance i n  simulation s tudies .  

exposure t o  100% oxygen 

The assessment of t h e  

I n  order t o  determine t h e  importance, i f  any, of  the r e l a t i v e  

differences i n  p a r t i a l  pressure of N2 (0.5 mm Hg) i n  the  Republic study 

and 3-5 mm Hg i n  t h e  USAF, School of Aviation Medicine study and the  

ACEL study and t o  provide grea te r  assurance t h a t  5 p s i  "pure9' oxygen 

environment w a s  operat ional ly  safe  fo r  a 30-day per iod,  two 3 0 - d ~  

experiments on four experimental and two control  subjects were con- 

ducted by Brooks Air Force Base i n  which t h e  a lveolar  oxygen p a r t i a l  

pressure [ A 

ambient atmosphere a t  700 mm Hg and 258 mm Hg and t h e  ambient ni t rogen 

p a r t i a l  pressure at 436 m Hg and 0.5 mm Hg, r e ~ p e c t i v e l y ' ~ ~ ) .  

t h r e e  occasions during t h e  258 mm Hg run t h e  pN2 increased t o  9, 11 

and 3 mm Hg requi r ing  1-3 hours of f l t s h i n g  before  t h e  pR2 w a s  reduced 

t o  0.5 mm Hg. 

P 
was maintained at approximately 170 nun a with t h e  

O2 

On 

The s ignif icance of these  deviations is unknown. 

Comprehensive hematological s tud ies  included rout ine hemoglobin, 

hematocri t ,  red  and white blood c e l l  and d i f f e r e n t i a l  counts, re t icu-  

locytes ,  osmotic f r a g i l i t y ,  Heinz body counts, f e c a l  and urine uro- 

bil inogen excre t ion ,  serum b i l i r u b i n ,  red c e l l  glutathione s t a b i l i t y ,  

glucose-6-phosphate dehydrogenase, s t e r n a l  bone marrows, and C r 5 1  and 

Fe5' isotope s tudies .  The only pos i t ive  r e s u l t  was a mild reduction i n  
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7 
hematocrit ,  hemoglobin, and red c e l l  counts, while t h e  ret iculocyte  

counts remained low during the  exposure period (Fig. 20, Fig. 20 and 

Fig. 22).  

02" experiment and is consistent with Republic's 5 p s i  group. 

no red blood c e l l  morphological changes were noted. A l l  t he  other 

s tudies  f a i l e d  t o  indicate  increased hemolysis or  an "oxidative 

anemic" process. 

Cl inical ly ,  t h e  only consis tent  symptams were aural a t e l e c t a s i s  

The g rea t e r  a l t e r a t ions  occurred i n  the  258 mm Hg "pure 

However, 

and nasal  congestion in  t h e  "pure oxyyeen" group. 

clearance and osmolarity determinations were normal. 

did not change during the experiment nor on return t o  ambient air .  

Arterial O2 contents ,  0 capac i t i e s ,  and per cent s a tu ra t ions  were 

within expected values.  Pulmonary function s tudies  demonstrated an 

increased maximum breathing capacity as a function of decreased gas 

density and a 3% decreased vital  capacity occurring upon ascent t o  

a l t i t u d e  and disappearing immediately with descent t o  ground l eve l .  

This unexplained consistent f inding appears t o  be e n d e d c  t o  Texas 

as it was not found i n  the Republic or  ACEL studies .  I n  t e s t s  con- 

ducted i n  Republic's simulator it has been noted t h a t  i f  t h e  subject  

can not visual ly  observe t h e  change i n  spirometric reading or  is not 

verbal ly  directed t o  continue h i s  exhalation e f f o r t ,  a f a l s e  low v i t a l  

capacity may be obtained 8 s  t he  subject loses  any sensation of cont inual  

expirat ion before t h e  expiration i s  completed. I n  any event,  t h e  re- 

ported decrease i n  v i t a l  capacity i s  not a t t r i bu ted  t o  the  e f f e c t  of 

breathing "pure oxygen". 

Urinalysis ,  createnine 

Dark adaptation 

2 
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Recent experiments conducted at ACEL have exposed eight subjects  

to 100% oxygen at 27,000 f ee t  fo r  72 hours t o  invest igate  t h e  v i sua l  

e f f e c t s  observed i n  t h e i r  previous study'"). Several  of t h e  subjects  

had t h e  "bends" end one had d e f i n i t e  x-ray and v i t a l  capacity evidence 

of a t e l e c t a s i s .  Visual data  has not been completely analyzed although 

the re  does appear t o  be a d e f i n i t e  change i n  t h e  ERG. 

Studies by Mengel e t  ~ 1 ' ~ ~ )  have demonstrated severe hemolysis 

i n  both mice and men on exposure t o  100% oxygen at 2-3 atmospheres of 

pressure.  I n  vivo formation of l i p i d  peroxides i n  erythrocytes of 

Vitamin B de f i c i en t  mice exposed to 'hyperbaric  oxygenation were asso- 

c i a t ed  with a decrease i n  hematocrit from 50% t o  20% and marked hemo- 

globenemia. 

t o  be unusually sens i t i ve  t o  hydrogen perioxide p r i o r  t o  hyperbaric 

oxygenation at 1-2 atmospheres pressure f o r  1-1/2 hours. 

after exposure h i s  hematocrit l e v e l  f e l l  from pre-treatment l e v e l s  Of 

48% t o  44% and s i x  days later t o  35%. The serum b i l i rub in  rose from 

less than 0.5 mg % t o  1.6 mg % andret iculocytes  increased from 0.5% 

The erythrocytes of  a 67 year old negro farmer were found 

Two days 

t o  4%. 

Erythrocytes from s i x  pa t i en t s  demonstrated accelerated auto 

hemolysis at  37OC a f t e r  in-vivo hyperoxic exposure. 

exposed t o  hyperbaric oxygenation from 8 t o  10 hours demonstrated 

evidence of change i n  erythrocyte glycolyt ic  intermediates with a rise 

i n  t h e  level of adenosine diphosphate, inorganic phosphate, fructose-1 -. 6 

diphosphate and a f a l l  of  adenosine tr iphosphate.  There were no 

changes i n  erythrocyte  reduced glutathione,  glucose-6-phosphate de- 

hydrogenase a c t i v i t y ,  ca l a l a se  a c t i v i t y  o r  methemoglobin content.  

Three patients.  



It was  hypothesized by t h e  authors t h a t  "the primary e f f e c t  of hyper- 

oxia i s  t h e  formation of increased l eve l s  of l i p i d  peroxides which may 

damage red c e l l  stroma d i r e c t l y ,  o r  through t h e i r  known i n a b i l i t y  t o  

i n h i b i t  sulfhydryl bearing enzymes subsequently i n t e r f e r e  with normal 

glycolysis  i n  other  metabolic systems ." 
R ~ t h ' ~ ~ )  i n  h i s  recent review of oxygen t o x i c i t y  made a survey 

of t h e  e f f e c t s  of increased oxygen tension on i n t r a c e l l u l a r  enxyme 

systems. 

i n h i b i t  enzymatic ac t iv i ty  of t h e  oxygen-dehydrogenase group ( l a c t i c ,  

malic and succinic ,  and triphosphate-dehydrogenase, and cytochrome C 

reductase).  

t e c t s  against  t h e  oxygen e f f e c t .  One aspect of  t h e  change is free 

r ad ica l  formation similar t o  t h e  e f f e c t  of radiat ion.  

tension appears a l s o  t o  i n h i b i t  hexokinase a c t i v i t y  while nitrogen 

ac t iva t e s  it . 

He reports  t ha t ,  i n  general ,  high oxygen tensions tend t o  

Anything t h a t  increases a c t i v i t y  of reducing agents pro- 

Increased oxygen 

(42) 

What operat ional  conclusions can be made about oxygen tox ic i ty?  

Atelectasis  w a s  not  detected during the  Gemini atmospheric va l ida t ion  

program i n  which exposure t o  pure oxygen f o r  two weeks was combined 

with launch and re-ently g simulations on a centr i fuge.  Subsequent 

experiments f o r  30 days at 5 p s i  pure oxygen did not demonstrate 

a t e l e c t a s i s .  

long exposures on t h e  pulmonary parenchyma's a b i l i t y  t o  withstand o r  

combat i n fec t ion ,  a l l e r g i e s  o r  i r r i t a t i o n  of noxious fumes. The e f f e c t  

of pure oxygen atmosphere under weightlessness has not been determined 

f o r  missions longer than thir ty-four  hours. Nevertheless, a t e l e c t a s i s  

probably w i l l  not be a s ign i f i can t  operat ional  problem i n  100% oxygen 

"closed atmospheres'' of space vehicles .  

However, t h e  e f f e c t s  of pure oxygen are not known f o r  
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Hematological changes could be dramatic without proper screening and 

ground simulation t e s t i n g  of po ten t i a l  as t ronauts .  

i n  an astronaut population should be minimal provided "sensi t izers"  a re  

not present i n  the  oxygen environment. 

on the  b io log ica l  e f f e c t  of contaminants i n  a "pure" oxygen environment 

i s  unknown. 

Hematological "misfits" 

However, t he  role of "sensi t izers"  

The possible  accelerat ion of aging by continuous exposure t o  oxygen 

i s  of no operat ional  s ignif icance.  Certainly,  with proper s e l ec t ion  of 

personnel and control  of atmospheric contaminants, t he re  does not appear 

t o  be any overriding physiological reason why "pure" oxygen could not be 

used i n  l i f e  support systems f o r  space missions of 30 days. Acceptabili ty 

f o r  longer missions m u s t  await addi t ional  space experience and longer ground 

simulation s tudies .  

l i f e  support systems is highly questionable. The increased f ire hazard 

and t h e  possible  increased t o x i c i t y  of contaminants i n  a "pure" o q g e n  

environment, coupled with t h e  introduct ion of an additional va r i ab le  i n  

assessing man's performance i n  t h e  space environment, d i c t a t e  consideration 

of two-gas systems approaching a sea  l eve l  environment for fu tu re  "closed 

atmosphere" l i f e  support systems. 

However, t he  d e s i r a b i l i t y  of  using 100% oxygen i n  fu tu re  

ImRT GASES 

General E l e c t r i c  Company r ecen t ly  conducted a five-man 30-day t e s t  

i n  a simulated space s t a t i o n  u t i l i z i n g  a 7-1/2 ps ia ,  50% O2 - 50% N2 

gaseous environment. This atmosphere w a s  select.& as optimal f o r  e a r l y  

manned o r b i t a l  space s t a t i o n s  based on an excellent analysis of re levant  

f ac to r s  by Parker and Ekberg'"). The crew performed basic psychological 
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t asks  and more complex mission simulation tasks  on a schedule re- 

presenta t ive  of  t h a t  which would be required i n  an ear th-orbi t ing 

space s t a t i o n .  

e n t i r e  t e s t  program and t h e  selected atmosphere did not r e s u l t  i n  any 

physiological  changes outside of normal c l i n i c a l  ranges. 

A high l e v e l  of performance w a s  maintained over t h e  

The physiological  importance of nitrogen o r  any i n e r t  gas has 

not  been establ ished.  Experimentally it i s  extremely d i f f i c u l t  t o  

maintain a ni t rogen free environment. 

are required,  experimental contamination could explain t h s  i n a b i l i t y  

t o  es tab l i sh  a physiological requirement f o r  nitrogen. Assuming a pure 

source of make-up oxygen, a space vehicle  without any inboard leakage 

of ni t rogen,  will have much l e s s  nitrogen contamination than ear th-  

bound experiments. 

I f  only a few nun Hg of ni t rogen 

Unt i l  recent ly ,  the consideration of using helium t o  replace 

ni t rogen i n  resp i ra tory  gases except f o r  medical purposes was  reserved 

f o r  underwater research. H e l i u m  has been shown t o  be more favorable 

than nitrogen i n  t h e  protection from t h e  development of "bends" a f t e r  

prolonged underwater exposure and should be morefavorable than ni t rogen 

a f t e r  space flight decompression. 

of exposure t o  helium are not  completely understood. 

However, the  physiological  e f f e c t s  

V ~ l s k i i " ~ )  has reported t h a t  eggs incubated i n  air appear t o  f i x  

gaseous ni t rogen and tha t  eggs incubated i n  atmospheres in  which ni t rogen 

was replaced by helium, argon, o r  xenon died between t h e  4th and w h  day. 

Boriskin e t  

compared t o  79% i n  air control) from eggs incubated i n  a helium-oxygen 

atmosphere. 

reported t h a t  they were able  t o  hatch chicks (27% 

Weiss e t  a l (45)  reported r e s u l t s  comparable t o  Boriskin when 
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they obtained e s sen t i a l ly  normal chicks (although smaller and only 

half  as many as controls)  from eggs incubated in helium-oxygen. 

has reported t h a t  without a t  l e a s t  10% nitrogen i n  the  atmosphere chick 

embryo do not develop normally during the  f i r s t  four days of development. 

H e  bel ieves  t h a t  "nitrogen plays an important r o l e  i n  the mechanism of 

oxygen t o x i c i t y  s ince i t s  exclusion from the  gas phase has e f f e c t s  on 

t h e  embryo indis t inguishable  from those obtained during incubation i n  

100% oxygen." Recent s tud ie s  by H i a t t  et suggest t h a t  t i s s u e s  

from eggs incubated i n  helium-oxygen mixture have a higher r a t e  of 

m e t a b o l i s m  than a i r  incubated embryos i f  t h e  t i s sues  a r e  t r ans fe r r ed  

from incubator t o  Warburg f l a sk  without exposure t o  nitrogen. 

homogenates are allowed t o  s tand i n  a i r ,  t h e i r  r a t e  of metabolism i s  

lower than t h a t  of control  embryos. 

( h 6 )  Allen 

If the  

This work needs ve r i f i ca t ion  but 

suggested t o  these invest igators  the hypothesis of an inhibi tory a f f e c t  

of nitrogen. Helium may release t h i s  i nh ib i t i on ,  but when t i s s u e s  

which have been i n  helium a re  then exposed t o  ni t rogen they may be 

par t i cu la r ly  vulnerable with an ac tua l  decrease i n  t h e i r  metabolism. 

The U. S.  Naval Medical Research Laboratory has been involved i n  

a series of experiments i n  a r t i f i c i a l  atmospheres. I n i t i a l l y ,  albino 

rats, guinea p igs ,  and squi-rrel  monkeys were exposed t o  normal and 

a r t i f i c i a l  atmospheres i n  a pressure chamber maintained a t  7 atmospheres 

f o r  72 hours,  and 1 2  t o  1b days(48). 

air and mixtures of 3% oxygen with e i t h e r  97% ni t rogen or 97% helium. 

White rate exposed t o  normal air at  7 atmosphere.pressure became 

l e tha rg ic  i n  15 hours and all died i n  35 hours. Histopathological 

examination revealed intra-alveolar  hemorrhage, pheumonia, pulmonary 

The gas compositions were normal 
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edema, and i n t e r s t i t i a l  hemorrhage i n  the  wocardium and kidneys. 

Guinea pigs  and ra t s  were exposed f o r  1 4  days t o  3% oxygen i n  

nitrogen at 7 atmospheres of pressure.  The animals were le tharg ic  

and demonstrated intermit tent  pares i s  of t h e  hind quar te rs  during 

t h e  experimental procedure. 

pneumonia were noted i n  both rats and guinea pigs. 

monkeys were exposed for 1 4  days t o  97% helium - 3% oxygen gas m i x t u r e  

at 7 atmospheres pressure without s ign i f icant  a l te ra t ions .  

concluded t h a t  "the four-fold grea te r  densi ty  of  t h e  ni t rogenaxygen 

gas ,  as compared t o  the helium-oxygen atmosphere, i s  considered t o  be 

a l imi t ing  fac tor  t o  normal a lveolar  vent i la t ion ,  predisposing t o  t h e  

development of pulmonary a t e l e c t a s i s  and pneumonia." 

f o r  human s tudies  decompression times were establ ished using goats 

exposed t o  a helium-oxygen atmosphere a t  200 f e e t  f o r  72 hours, as 36 

hours s tops at 84 and 26 f e e t ,  respect ively.  

Post-run foca l  pulmonary a t e l e c t a s i s  and 

Rats and s q u i r r e l  

The authors 

In preparat ion 

Human experimental work w a s  conducted i n  Project  Genesis I. Three 

men were exposed i n  a 30 cubic meter pressure chamber (Fig. 23) f o r  12 

days under 7 atmospheres absolute  pressure with a gaseous environment 

containing approximately 90% He, 3.8% 02, 5.8% N 2  and .4% C02. 

densi ty  of  t h e  ambient gas was 1 .5  times t h e  densi ty  of  air .  

helium t r a n s f e r s  heat  a t  a r a t e  approximately seven times grea te r  than 

air,,maintenance of a thermal comfort zone required a cabin temperature 

of 91'F. 

a l t e r a t i o n  i n  pulmonary functions. 

volume, but  a 20% decrease in  VC a f t e r  h hours ( l a r g e l y  due t o  a de- 

crease i n  ERV), with a re turn  t o  control  by t h e  f i f t h  day; increased 

The 

Since 

The subjec ts  did not experience any symptomatology or  major 

There was "an increase i n  t i d a l  



airflow re s i s t ance  throughout as manifested by a f a l l  i n  MBC from 129% 

of  t h e  predicted value t o  83%, a 13% decrease i n  one second timed VC,  

and a 33% reduction i n  peak expiratory flow rate('')*'. 

A current  p ro jec t ,  Sea Lab I ,  w i l l  provide qua r t e r s  for  a team of 

four  Navy divers  t o  l i v e  and work 192 feet under t h e  sea for a 3-week 

period -- 26 miles o f f  Bermuda, near t h e  Argus Is land in s t a l l a t ion .  

The Sealab (Fig. 2 b )  is a chamber of 3/4" s t e e l ,  40 f e e t  long by 10 

feet i n  diameter, adapted from t e n  f l o a t s  o r ig ina l ly  used t o  support 

mine destruct ion gear. It i s  self-contained except f o r  e l e c t r i c a l  power 

which w i l l  be supplied from a surface support ship.  

hatches i n  t h e  bottom of t h e  chamber through which the invest igators  

can have access t o  the  sea s ince t h e  pressure in s ide  w i l l  be t h e  same 

as t h e  pressure of  t he  water vehicle i n  the  chamber. A t  the  end of t h e  

study, decompression from t h i s  depth w i l l  require  5h hours. 

There w i l l  be two 

Welch(50) intends i n  the  near fu tu re  t o  study the  e f f ec t s  of  helium 

on humans at  reduced t o t a l  pressures.  

"closed atmospheres" will depend on a more complete understanding of 

i t s  physiological e f f e c t s  on man and a b e t t e r  evaluation of "bends" 

r i s k  with decompression from oxygen-nitrogen cabin atmospheres. 

The use o f  helium i n  fu tu re  

ATMOSPHERE CONTAMINANTS 

The "closed atmosphere" r equ i r e s  careful consideration and lab- 

oratory invest igat ion of t h e  e f f e c t s  of atmospheric contamination. 

Toxicants,  both chemical and b io log ica l ,  may be e x p e c t e d t o  bu i ld  up 
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BS a function of mission duration and improvement in  capsule seal ing 

techniques. 

control  devices,  and the determination of human tolerances t o  t r a c e  

contaminants w i l l  be required. 

C r i t i c a l  select ion of materials, improved monitoring and 

Human responses t o  the  usual i n d u s t r i a l  toxicants  are w e l l  known. 

Specific toxicants  may cause pulmonary edema, impaired r ena l  function, 

anemia, l i v e r  necrosis ,  neuromuscular dysfunction o r  a f f e c t  cen t r a l  

nervous system performance. However, t he  t o x i c i t y  of t h e  space s t a t ion ’ s  

atmosphere may be more subt le .  The in t e rac t ions  of space environment 

f ac to r s ,  minute concentrations of a host of possible  contaminants and 

individual suscep t ib i l i t y  i s  unknown. 

Current i n d u s t r i a l  toxicological  l i m i t s  prepared f o r  a 40-hour week 

w i l l  not be appl icable  t o  t h e  168-hour week exposure t i m e  of  t he  astro-  

nauts. 

ska to l e ,  e t c . )  and others having a var iable  sa fe ty  f a c t o r  incorporated 

i n  them. 

taminants i n  space t r a v e l  88 3 t o  50 t i m e s  less than i n d u s t r i a l  threshold 

l i m i t  values. He believes t h a t  completely d i f f e ren t  toxicological  e f f e c t s  

can be predicted f o r  capsule contaminants i n  a one gas (oxygen) system 

than i n  a two-gas system (oxygen-nitrogen). 

t h e  threshold limits by a f ac to r  from 2 t o  4. 

Threshold l i m i t  values are not s t a t ed  f o r  some compounds (indole,  

S t ~ k i n g e r ( ~ ’ )  calculated threshold limits f o r  t y p i c a l  con- 

Oxygen t o x i c i t y  m a y  reduce 

T h o ~ ~ a s ( ~ ~ )  does not believe t h a t  i n d u s t r i a l  TLV’s can be used f o r  

long-term exposure c r i t e r i a  because physiological act ions and in t e r -  

act ions between various contaminants, which may be ,additive,  syne rg i s t i c ,  

or antagonis t ic ,  would preclude any extrapolation. 

l a t i v e l y  minimal r e s t r i c t i o n s  i n  s i z e ,  weight, and power requirements 

In  s p i t e  of  t h e  re- 
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of monitoring equipment i n  the Polar is  submarines, detection and 

iden t i f i ca t ion  of t r a c e  contaminants has been exceedingly d i f f i c u l t .  

Hence, even l e s s  is known about t he  b io log ica l  s ignif icance of  these 

atmospheric contaminants. The 6570th Aerospace Medical Research 

Laboratories a re  e s t ab l i sh ing  a continuous inhalat ion f a c i l i t y  capable 

of  uninterrupted long-term exposure of l a rge  numbers of  animals at 

various pressures and gas compositions t o  determine t h e  biological  

e f f e c t s  of contaminants under simulated space f l i g h t  atmospheres. 

Space vehicular  s an i t a t ion ,  especial ly  the  water supply, w i l l  be 

c r i t i c a l  f o r  t he  heal th  and comfort of t h e  astronauts .  Acceptable 

standards f o r  potable water have not been establ ished.  U. S. Navy 

Po la r i s  submarine experience has demonstrated a marked decrease i n  

the  incidence of  i n fec t ious  diseases among crew members, probably due 

t o  t h e  development of cross immunity. However, the potable water source 

and human waste disposal  system are  g rea t ly  s implif ied on a submarine 

compared t o  a space vehicle.  Simulation s tudies  have f a i l ed  t o  de- 

monstrate t h e  development and spread of c l i n i c a l l y  s ign i f i can t  infect ions.  

However, i n fec t ion  may be a problem i n  the  t e s t i n g  of future "closed 

atmospheres" with regenerative l i f e  support systems. 

cu r ren t ly  conducting microbiological evaluation of various personal 

hygiene rout ines  at  Wright-Patterson A i r  Force Base during "closed 

atmosphere" simulation runs. 

Republic is 

The space environment may a l t e r  microbials by changing virulence 

and mutation r a t e .  

may be unable t o  fu l f i l l  t h i s  t a s k ,  r e su l t i ng  i n  disturbence of digest ion,  

absorption, excret ion,  and nu t r i t i on .  Microbials produce noxious fumes 

Organisms which play an e s s e n t i a l  role i n  digestion 
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and may have a d i r e c t  corrosive e f fec t  on hardware. "It i s  estimated 

t h a t  about t e n  grams of microorganisms will be present a f t e r  s i x t y  

days i n  present ly  planned space s t a t i o n s  unless b a c t e r i c i d a l  agents 

are per iodical ly  applied t o  all a r e s  of the  s ta t ion."(52)  

The importance of ground-based s imulators  t o  check out l i f e  support 

systems f o r  contaminants and t o  es tab l i sh  t h e i r  b io logica l  s ign i f icance  

w a s  demonstrated by t h e  i n i t i a l  abort i n  t h e  Manned Environmental System 

Assessment experiment(53). The test w a s  aborted a f t e r  b1/2 days be- 

cause of crew nausea and subsystem equipment malfunction. 

study of t h e  sources of contaminants was made resu l t ing  i n  s i g n i f i c a n t  

modifications of t h e  or ig ina l  system. Subsequently, t h e  Boeing Company 

successful ly  completed the (MESA) program demonstrating t h a t  f i v e  men 

can survive f o r  t h i r t y  days i n  a closed self-sustained in tegra ted  system 

environment. 

mission o r  f o r  space use, but  did permit the  inves t iga t ion  of t h e  i n t e r -  

act ion of man  and t h e  system. The subsystems included: 

atmosphere regulat ing using sodium superoxide and l i thium hydroxide, 

( 2 )  f i l t r a t i o n  and high-temperature c a t a l y t i c  oxidation f o r  t r a c e  con- 

taminant cont ro l ,  ( 3 )  outside cooled c i rcu la t ion  glycol  hea t  exchanger 

f o r  temperature and humidity cont ro l ,  ( 4 )  bio logica l  ac t iva ted  sludge 

system f o r  t r e a t i n g  t h e  crew w e s t e  and supplying ef f luent  f o r  water 

processing, and ( 5 )  water treatment system using high temperature 

c a t a l y t i c  oxidation and mul t i - f i l t ra t ion .  This study dramatically 

emphasized t h e  toxicological  problems i n  "closed atmospheres" and 

t h e  value of in tegra t ion  t e s t i n g  i n  es tab l i sh ing  system design con- 

cepts and ensuring operational r e l i a b i l i t y .  Contaminant cont ro l  

An exhaustive 

The integrated system w 8 s  not optimized f o r  a thirty-day 

(1) a chemical 
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system requirements may l i m i t  t h e  f e a s i b i l i t y  and p r a c t i c a l i t y  of 

regenerative l i f e  support systems with increasing degrees of  closure 

of t he  "closed atmosphere" fo r  t he  foreseeable future. 

FUTURE LIFE SUPPORT SYSTEMS 

L i fe  support systems include more than t h e  "closed atmosphere". 

I n  addition t o  atmospheric and thermal control ,  fu tu re  l i f e  support 

systems m u s t  i n t eg ra t e  food, water, and waste management. Prototype 

l i f e  support systems should make maximum u t i l i z a t i o n  of  spacecraf t  

by-products and becompatible with w e i g h t ,  power, and volume cap- 

a b i l i t i e s .  Longer space missions will require  regenerable l i f e  support 

systems. 

I n  order of increasing complexity, t h e  development of regenerable 

systems f o r  (1) CO removal, ( 2 )  reclamation of himidity condensate 

and ur ine water, (3) extract ion of oxygen from cop and water,  ( 4 )  

reclamation of  f e c a l  water,  and ( 5 )  food production will  gradually 

close fu tu re  l i f e  support systems. However, b io log ica l  regenerative 

systems appear beyond t h e  next generation of l i f e  support systems 

(10-15 yea r s )  ; water probably being the  only mater ia l  recovered from 

human wastes(54) .  

reasons,  although the re  would appear t o  be s u f f i c i e n t  j u s t i f i c a t i o n  

f o r  t h i s  appra i sa l  on consideration of t he  complexity of t he  po ten t i a l  

contamination problem with b io log ica l  systems. Additionally,  re- 

l i a b i l i t y  would have t o  be establ ished as "crop fai lures"  could be 

diastrous.  

2 

This outlook i s  based primarily on engineering 
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General Dynamics i s  cur ren t ly  fabr ica t ing  f o r  NASA, Langley, 

a 4-man t o t a l  integrated regenerat ive l i f e  support system with a 90- 

day resupply s u i t a b l e  for  zero g operation i n  space s ta t ions .  It i s  

estimated t h a t  t h e  system would weight 1 , h l O  pounds, use an average of 

2,062watts and require  1,433 pounds of expendables every 90 days. 

This system w i l l  be i n s t a l l e d  at NASA Langley Research Center f o r  

both unmanned and manned experiments t o  resolve systems in tegra t ion  

problems and evaluate  t h e i r  performance against  r e a l i s t i c  mission 

requirements. With the  advent of fhture NASA space programs, orb i t ing  

space s t a t i o n s ,  MOLAB, planetary missions, e t c . ,  the  components and 

subsystems of space systems w i l l  change markedly. However, man, t h e  

most complex and versa t i le  component i n  t h e  space system, w i l l  change 

ne i ther  i n  design nor function s ince  man's s t r u c t u r a l  changes a re  

measured i n  mil lennia  ra ther  than months o r  years of an engineering 

t imetable .  

and f a c i l i t a t i n g  h i s  performance ( t h e  "closed atmosphere") keep pace 

with t h e  vehicles  and boosters capable of placing him i n  the  more 

demanding fu ture  missions of the  space age . 

It i s  imperative t h a t  t h e  methods of preserving man's hea l th  

(55)  
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Figure 1 Space Environments 
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Figure 2 Space Environments ( c o n t . )  
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